论文标题
多重对比度MRI超分辨率
Transformer-empowered Multi-scale Contextual Matching and Aggregation for Multi-contrast MRI Super-resolution
论文作者
论文摘要
磁共振成像(MRI)可以呈现相同的解剖结构的多对比图像,从而实现多对比度超分辨率(SR)技术。与使用单对比度的SR重建相比,多对比度SR重建有望通过利用多种多样但互补的信息嵌入不同影像学方式来产生具有较高质量的SR图像。但是,现有方法仍然存在两个缺点:(1)他们忽略了不同尺度上的多对比功能包含不同的解剖细节,因此缺乏有效的机制来匹配和融合这些功能以更好地重建; (2)它们仍然缺乏捕获长期依赖性,这对于具有复杂解剖结构的区域至关重要。我们提出了一个新颖的网络,通过开发一组创新的变压器授权的多尺度上下文匹配和聚合技术来全面解决这些问题。我们称其为MCMRSR。首先,我们驯服变形金刚在参考图像和目标图像中对远程依赖性建模。然后,提出了一种新的多尺度上下文匹配方法,以从不同尺度的参考特征捕获相应的上下文。此外,我们引入了多尺度的聚合机制,以逐渐和交互式汇总的多尺度匹配特征来重建目标SR MR图像。广泛的实验表明,我们的网络表现优于最先进的方法,并且具有巨大的潜力,可以应用于临床实践。代码可在https://github.com/xaimi-lab/mcmrsr上找到。
Magnetic resonance imaging (MRI) can present multi-contrast images of the same anatomical structures, enabling multi-contrast super-resolution (SR) techniques. Compared with SR reconstruction using a single-contrast, multi-contrast SR reconstruction is promising to yield SR images with higher quality by leveraging diverse yet complementary information embedded in different imaging modalities. However, existing methods still have two shortcomings: (1) they neglect that the multi-contrast features at different scales contain different anatomical details and hence lack effective mechanisms to match and fuse these features for better reconstruction; and (2) they are still deficient in capturing long-range dependencies, which are essential for the regions with complicated anatomical structures. We propose a novel network to comprehensively address these problems by developing a set of innovative Transformer-empowered multi-scale contextual matching and aggregation techniques; we call it McMRSR. Firstly, we tame transformers to model long-range dependencies in both reference and target images. Then, a new multi-scale contextual matching method is proposed to capture corresponding contexts from reference features at different scales. Furthermore, we introduce a multi-scale aggregation mechanism to gradually and interactively aggregate multi-scale matched features for reconstructing the target SR MR image. Extensive experiments demonstrate that our network outperforms state-of-the-art approaches and has great potential to be applied in clinical practice. Codes are available at https://github.com/XAIMI-Lab/McMRSR.