论文标题

同型斜角切线的两参数展开的强大异量级循环

Robust heterodimensional cycles in two-parameter unfolding of homoclinic tangencies

论文作者

Li, Dongchen, Li, Xiaolong, Shinohara, Katsutoshi, Turaev, Dmitry

论文摘要

我们考虑$ c^r $ $(r = 3,\ dots,\ infty,ω)$ diffemorithism,具有通用的同型固定性,与双曲线周期性点具有通用的同型截面,在该点上,这个点至少具有一个(非真实的)中心乘数,并且对中心的多与中心的某些明确的假设在中心上很满意,使得动态既不是在官能上的固定性,而是有效的。我们证明,$ c^1 $ - 抛光的杂二量周期在任何通用的两参数$ c^r $ $ $上都出现在这种切实的情况下。这些异量级循环也具有$ C^1 $ - 固定的同层次切线。

We consider $C^r$ $(r=3,\dots,\infty,ω)$ diffeomorphisms with a generic homoclinic tangency to a hyperbolic periodic point, where this point has at least one complex (non-real) central multiplier and some explicit assumptions on central multipliers are satisfied so that the dynamics near the homoclinic tangency is not effectively one-dimensional. We prove that $C^1$-robust heterodimensional cycles of co-index one appear in any generic two-parameter $C^r$-unfolding of such a tangency. These heterodimensional cycles also have $C^1$-robust homoclinic tangencies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源