论文标题

大型模型的路线图

A Roadmap for Big Model

论文作者

Yuan, Sha, Zhao, Hanyu, Zhao, Shuai, Leng, Jiahong, Liang, Yangxiao, Wang, Xiaozhi, Yu, Jifan, Lv, Xin, Shao, Zhou, He, Jiaao, Lin, Yankai, Han, Xu, Liu, Zhenghao, Ding, Ning, Rao, Yongming, Gao, Yizhao, Zhang, Liang, Ding, Ming, Fang, Cong, Wang, Yisen, Long, Mingsheng, Zhang, Jing, Dong, Yinpeng, Pang, Tianyu, Cui, Peng, Huang, Lingxiao, Liang, Zheng, Shen, Huawei, Zhang, Hui, Zhang, Quanshi, Dong, Qingxiu, Tan, Zhixing, Wang, Mingxuan, Wang, Shuo, Zhou, Long, Li, Haoran, Bao, Junwei, Pan, Yingwei, Zhang, Weinan, Yu, Zhou, Yan, Rui, Shi, Chence, Xu, Minghao, Zhang, Zuobai, Wang, Guoqiang, Pan, Xiang, Li, Mengjie, Chu, Xiaoyu, Yao, Zijun, Zhu, Fangwei, Cao, Shulin, Xue, Weicheng, Ma, Zixuan, Zhang, Zhengyan, Hu, Shengding, Qin, Yujia, Xiao, Chaojun, Zeng, Zheni, Cui, Ganqu, Chen, Weize, Zhao, Weilin, Yao, Yuan, Li, Peng, Zheng, Wenzhao, Zhao, Wenliang, Wang, Ziyi, Zhang, Borui, Fei, Nanyi, Hu, Anwen, Ling, Zenan, Li, Haoyang, Cao, Boxi, Han, Xianpei, Zhan, Weidong, Chang, Baobao, Sun, Hao, Deng, Jiawen, Zheng, Chujie, Li, Juanzi, Hou, Lei, Cao, Xigang, Zhai, Jidong, Liu, Zhiyuan, Sun, Maosong, Lu, Jiwen, Lu, Zhiwu, Jin, Qin, Song, Ruihua, Wen, Ji-Rong, Lin, Zhouchen, Wang, Liwei, Su, Hang, Zhu, Jun, Sui, Zhifang, Zhang, Jiajun, Liu, Yang, He, Xiaodong, Huang, Minlie, Tang, Jian, Tang, Jie

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源