论文标题

部分可观测时空混沌系统的无模型预测

Demonstrating CAT: Synthesizing Data-Aware Conversational Agents for Transactional Databases

论文作者

Gassen, Marius, Hättasch, Benjamin, Hilprecht, Benjamin, Geisler, Nadja, Fraser, Alexander, Binnig, Carsten

论文摘要

OLTP的数据库通常是用于酒店房间或电影票预订应用程序等应用的骨干。但是,开发对话代理(即类似聊天机器人的界面),以允许最终用户使用自然语言与应用程序进行交互,这既需要大量的培训数据和NLP专业知识。这激发了CAT,可用于轻松创建用于交易数据库的对话剂。主要思想是,对于给定的OLTP数据库,CAT使用弱监督来合成所需的培训数据来训练最先进的对话代理,从而使用户可以与OLTP数据库进行交互。此外,CAT提供了与数据库的生成代理的定期集成。作为现有对话剂的主要区别,由CAT合成的代理是数据感知的。这意味着代理商根据数据库中的当前数据分布来确定应从用户请求哪些信息,这通常会导致与非DATA-INAVEANA的代理相比,这显着高效的对话。我们将CAT代码作为开源。

Databases for OLTP are often the backbone for applications such as hotel room or cinema ticket booking applications. However, developing a conversational agent (i.e., a chatbot-like interface) to allow end-users to interact with an application using natural language requires both immense amounts of training data and NLP expertise. This motivates CAT, which can be used to easily create conversational agents for transactional databases. The main idea is that, for a given OLTP database, CAT uses weak supervision to synthesize the required training data to train a state-of-the-art conversational agent, allowing users to interact with the OLTP database. Furthermore, CAT provides an out-of-the-box integration of the resulting agent with the database. As a major difference to existing conversational agents, agents synthesized by CAT are data-aware. This means that the agent decides which information should be requested from the user based on the current data distributions in the database, which typically results in markedly more efficient dialogues compared with non-data-aware agents. We publish the code for CAT as open source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源