论文标题
基准测试深度AUROC优化:损失功能和算法选择
Benchmarking Deep AUROC Optimization: Loss Functions and Algorithmic Choices
论文作者
论文摘要
ROC曲线(AUROC)下的区域已大力应用于分类不平衡,并与深度学习技术相结合。但是,没有现有的工作为同行选择适当的深度AUROC最大化技术提供合理的信息。在这项工作中,我们从三个方面填补了这一空白。 (i)我们基于具有不同算法选择的各种损失函数,以解决深度AUROC优化问题。我们研究了两类损失功能:成对损失和复合损失,其中包括10个损失函数。有趣的是,我们发现综合损失是一种创新的损失函数类别,比训练收敛和测试概括的角度的成对损失表现出更具竞争力的性能。然而,带有更损坏的标签的数据有利于成对的对称损失。 (ii)此外,我们基准并强调了必不可少的算法选择,例如正采样率,正则化,归一化/激活和优化器。主要发现包括:较高的阳性采样率可能对深度AUROC最大化有益;不同的数据集有利于不同的正规化权重。适当的归一化技术,例如Sigmoid和$ \ ell_2 $得分归一化,可以提高模型性能。 (iii)为了优化方面,我们基于成对和复合损失的SGD型,动量类型和Adam型优化器。我们的发现表明,尽管从培训的角度来看,亚当型方法更具竞争力,但从测试角度来看,它并不优于其他方法。
The area under the ROC curve (AUROC) has been vigorously applied for imbalanced classification and moreover combined with deep learning techniques. However, there is no existing work that provides sound information for peers to choose appropriate deep AUROC maximization techniques. In this work, we fill this gap from three aspects. (i) We benchmark a variety of loss functions with different algorithmic choices for deep AUROC optimization problem. We study the loss functions in two categories: pairwise loss and composite loss, which includes a total of 10 loss functions. Interestingly, we find composite loss, as an innovative loss function class, shows more competitive performance than pairwise loss from both training convergence and testing generalization perspectives. Nevertheless, data with more corrupted labels favors a pairwise symmetric loss. (ii) Moreover, we benchmark and highlight the essential algorithmic choices such as positive sampling rate, regularization, normalization/activation, and optimizers. Key findings include: higher positive sampling rate is likely to be beneficial for deep AUROC maximization; different datasets favors different weights of regularizations; appropriate normalization techniques, such as sigmoid and $\ell_2$ score normalization, could improve model performance. (iii) For optimization aspect, we benchmark SGD-type, Momentum-type, and Adam-type optimizers for both pairwise and composite loss. Our findings show that although Adam-type method is more competitive from training perspective, but it does not outperform others from testing perspective.