论文标题

因果关系激发了域概括的代表性学习

Causality Inspired Representation Learning for Domain Generalization

论文作者

Lv, Fangrui, Liang, Jian, Li, Shuang, Zang, Bin, Liu, Chi Harold, Wang, Ziteng, Liu, Di

论文摘要

域的概括(DG)本质上是一个分布的问题,目的是将从多个源域中学到的知识推广到看不见的目标域。主流是利用统计模型来建模数据和标签之间的依赖性,以学习独立于域的表示表示。然而,统计模型是对现实的表面描述,因为它们仅需要建模依赖性而不是固有的因果机制。当依赖性随目标分布而变化时,统计模型可能无法概括。在这方面,我们介绍了一个通用的结构性因果模型来形式化DG问题。具体而言,我们假设每个输入都是由因果因素(其与标签的关系跨域之间不变的)和非因果因素(无类别无关)的混合而构建的,并且只有前者会导致分类判断。我们的目标是从输入中提取因果因素,然后重建不变的因果机制。但是,理论思想远非DG的实用性,因为所需的因果/非因素因素没有观察到。我们强调,理想的因果因素应符合三个基本特性:与非因果关系分开,共同独立,并且有因果关系足以分类。基于此,我们提出了一种因果关系启发的表示学习(CIRL)算法,该算法强制执行表示以上属性,然后使用它们来模拟因果因素,从而提高了一般的概括能力。对几个广泛使用的数据集的广泛实验结果验证了我们方法的有效性。

Domain generalization (DG) is essentially an out-of-distribution problem, aiming to generalize the knowledge learned from multiple source domains to an unseen target domain. The mainstream is to leverage statistical models to model the dependence between data and labels, intending to learn representations independent of domain. Nevertheless, the statistical models are superficial descriptions of reality since they are only required to model dependence instead of the intrinsic causal mechanism. When the dependence changes with the target distribution, the statistic models may fail to generalize. In this regard, we introduce a general structural causal model to formalize the DG problem. Specifically, we assume that each input is constructed from a mix of causal factors (whose relationship with the label is invariant across domains) and non-causal factors (category-independent), and only the former cause the classification judgments. Our goal is to extract the causal factors from inputs and then reconstruct the invariant causal mechanisms. However, the theoretical idea is far from practical of DG since the required causal/non-causal factors are unobserved. We highlight that ideal causal factors should meet three basic properties: separated from the non-causal ones, jointly independent, and causally sufficient for the classification. Based on that, we propose a Causality Inspired Representation Learning (CIRL) algorithm that enforces the representations to satisfy the above properties and then uses them to simulate the causal factors, which yields improved generalization ability. Extensive experimental results on several widely used datasets verify the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源