论文标题

定期驱动的非线性振荡器中最可能的逃生路径

Most probable escape paths in periodically driven nonlinear oscillators

论文作者

Cilenti, Lautaro, Cameron, Maria, Balachandran, Balakumar

论文摘要

机械系统的动力学,例如具有多个叶片的涡轮机械的动力学通常是通过定期驱动的耦合非线性振荡器来建模的。众所周知,这种系统可能具有多种稳定的振动模式,并且它们之间的过渡可能在随机因素的影响下发生。开发了一种方法,用于查找最可能的逃逸路径和估计小噪声限制中的过渡速率,并应用于具有立方非线性,小型阻尼和谐波外部强迫的耦合单稳定振荡器阵列的集合。该方法基于动作图方法(Beri等,2005),并依赖于大偏差理论,最佳控制理论和浮力理论。提出了动作图方法促进到非自治的高维系统,并提出了一种解决不连续的目标函数的优化问题的方法。在多达五个振荡器阵列中稳定振动模式与相应的准隔屏屏障的稳定振动模式之间的最可能的逃生路径是计算和可视化的。讨论了准电位屏障对系统参数的依赖性。

The dynamics of mechanical systems such as turbomachinery with multiple blades are often modeled by arrays of periodically driven coupled nonlinear oscillators. It is known that such systems may have multiple stable vibrational modes, and transitions between them may occur under the influence of random factors. A methodology for finding most probable escape paths and estimating the transition rates in the small noise limit is developed and applied to a collection of arrays of coupled monostable oscillators with cubic nonlinearity, small damping, and harmonic external forcing. The methodology is built upon the action plot method (Beri et al. 2005) and relies on the large deviation theory, optimal control theory, and the Floquet theory. The action plot method is promoted to non-autonomous high-dimensional systems, and a method for solving the arising optimization problem with discontinuous objective function restricted to a certain manifold is proposed. The most probable escape paths between stable vibrational modes in arrays of up to five oscillators and the corresponding quasipotential barriers are computed and visualized. The dependence of the quasipotential barrier on the parameters of the system is discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源