论文标题
宇宙学Krylov的复杂性
Cosmological Krylov Complexity
论文作者
论文摘要
在本文中,我们使用两种模式的状态形式主义在有效的领域具有声音速度$ C_S $的情况下研究了Sitter空间的平面/通货膨胀贴片的Krylov复杂性($ K $)。从我们的分析中,我们在存在有效的声速$ C_S $的情况下,就保形的时间尺度和比例因子而言,Krylov复杂性($ K $)和Lancoz系数($ b_n $)的明确行为。由于Lancoz系数($ b_n $)与整数$ n $线性生长,这表明宇宙在此期间的作用像混乱的系统。在有效的音速$ C_S $的情况下,我们还获得了相应的Lyapunov指数$λ$。我们表明,该系统的Krylov复杂性($ K $)等于平均粒子数,表明其与体积有关系。最后,我们将Krylov复杂性($ K $)与纠缠熵(von-Neumann)进行了比较,在那里我们发现Krylov复杂性($ K $)和纠缠率之间存在很大差异,以弥补巨大的幅度。这表明Krylov的复杂性($ K $)即使在纠缠熵饱和后,也可以研究研究宇宙系统的动力学。
In this paper, we study the Krylov complexity ($K$) from the planar/inflationary patch of the de Sitter space using the two mode squeezed state formalism in the presence of an effective field having sound speed $c_s$. From our analysis, we obtain the explicit behavior of Krylov complexity ($K$) and lancoz coefficients ($b_n$) with respect to the conformal time scale and scale factor in the presence of effective sound speed $c_s$. Since lancoz coefficients ($b_n$) grow linearly with integer $n$, this suggests that universe acts like a chaotic system during this period. We also obtain the corresponding Lyapunov exponent $λ$ in presence of effective sound speed $c_s$. We show that the Krylov complexity ($K$) for this system is equal to average particle numbers suggesting it's relation to the volume. Finally, we give a comparison of Krylov complexity ($K$) with entanglement entropy (Von-Neumann) where we found that there is a large difference between Krylov complexity ($K$) and entanglement entropy for large values of squeezing amplitude. This suggests that Krylov complexity ($K$) can be a significant probe for studying the dynamics of the cosmological system even after the saturation of entanglement entropy.