论文标题
用于求解完全连接加权图的拉普拉斯矩阵的本本特征算法的量子算法
A quantum algorithm for solving eigenproblem of the Laplacian matrix of a fully connected weighted graph
论文作者
论文摘要
求解完全连接的加权图的拉普拉斯矩阵的本本特征在数据科学,机器学习和图像处理等中具有广泛的应用。但是,这非常具有挑战性,因为它涉及昂贵的矩阵操作。在这里,我们提出了一种有效的量子算法,以基于一个假设,即每个顶点及其规范的元素都可以通过量子随机访问存储数据结构有效访问。具体而言,我们基于块编码框架采用了最佳的哈密顿模拟技术来实现Laplacian矩阵的量子模拟。然后,通过量子相估计算法提取了拉普拉斯基质的特征值和特征向量。我们整个算法的核心是构造拉普拉斯矩阵的块编码。为了实现这一目标,我们详细提出了如何构建包含权重矩阵和度矩阵信息的运算符的块编码,并进一步获得Laplacian矩阵的块编码。与其经典的对应物相比,我们的算法对每个顶点的尺寸的顶点数量和指数加速具有多项式加速。我们还表明,我们的算法可以扩展以求解对称(非对称)归一化laplacian矩阵的本本特征。
Solving eigenproblem of the Laplacian matrix of a fully connected weighted graph has wide applications in data science, machine learning, and image processing, etc. However, this is very challenging because it involves expensive matrix operations. Here, we propose an efficient quantum algorithm to solve it based on a assumption that the element of each vertex and its norms can be effectively accessed via a quantum random access memory data structure. Specifically, we adopt the optimal Hamiltonian simulation technique based on the block-encoding framework to implement the quantum simulation of the Laplacian matrix. Then, the eigenvalues and eigenvectors of the Laplacian matrix are extracted by the quantum phase estimation algorithm. The core of our entire algorithm is to construct the block-encoding of the Laplacian matrix. To achieve this, we propose in detail how to construct the block-encodings of operators containing the information of the weight matrix and the degree matrix respectively, and further obtain the block-encoding of the Laplacian matrix. Compared with its classical counterpart, our algorithm has a polynomial speedup on the number of vertices and an exponential speedup on the dimension of each vertex. We also show that our algorithm can be extended to solve the eigenproblem of symmetric (non-symmetric) normalized Laplacian matrix.