论文标题

molgensurvey:用于分子设计的机器学习模型的系统调查

MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design

论文作者

Du, Yuanqi, Fu, Tianfan, Sun, Jimeng, Liu, Shengchao

论文摘要

分子设计是分子科学中的一个基本问题,并且在各种领域(例如药物发现,材料科学等)都有关键的应用。但是,由于较大的搜索空间,人类专家不可能列举和测试湿lab实验中的所有分子。最近,随着机器学习方法的快速发展,尤其是生成方法,分子设计通过利用机器学习模型生成候选分子来取得了巨大进步。在本文中,我们系统地回顾了分子设计机器学习模型中最相关的工作。我们首先简要审查主流分子特征和表示方法(包括1D字符串,2D图和3D几何形状)和一般生成方法(深生成和组合优化方法)。然后,我们将根据问题设置(包括输入,输出类型和目标)将所有现有的分子设计问题汇总到几个场所中。最后,我们以开放的挑战为总结,并指出现实世界应用中分子设计的机器学习模型的未来机会。

Molecule design is a fundamental problem in molecular science and has critical applications in a variety of areas, such as drug discovery, material science, etc. However, due to the large searching space, it is impossible for human experts to enumerate and test all molecules in wet-lab experiments. Recently, with the rapid development of machine learning methods, especially generative methods, molecule design has achieved great progress by leveraging machine learning models to generate candidate molecules. In this paper, we systematically review the most relevant work in machine learning models for molecule design. We start with a brief review of the mainstream molecule featurization and representation methods (including 1D string, 2D graph, and 3D geometry) and general generative methods (deep generative and combinatorial optimization methods). Then we summarize all the existing molecule design problems into several venues according to the problem setup, including input, output types and goals. Finally, we conclude with the open challenges and point out future opportunities of machine learning models for molecule design in real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源