论文标题
DV-QKD与1.6 TBPS经典通道共存
DV-QKD Coexistence With 1.6 Tbps Classical Channels Over Hollow Core Fibre
论文作者
论文摘要
在空心核心嵌套抗抗剂节点纤维(HC-NANF)上以载体级的经典光通道(HC-NANF)共存量子通道的可行性首次在实验中,就可实现的量子位错误率(QBER),秘密关键率(SKR)以及经典信号错误率(ber)而言。在2 km长的HC-NANF上同时,与量子通道同时获得了1.6 TBP的共存传播,总共共存功率为0 dbm。为了找到经典通道的最佳和最差波长位置,我们模拟了不同的经典通道频带,考虑到量子和经典通道之间的间距不同,考虑到来自拉曼散射和四波混合(FWM)在量子通道上产生的串扰。仿真之后,我们在数值上估计了经典通道的最佳(拉曼光谱倾角)和最差的位置(拉曼光谱峰),就其对SKR和QBER的影响对量子通道的性能的影响。我们进一步实施了一个测试台,以实验性测试单模式纤维(SMF)和HC-NANF,以最佳和最差的场景测试。在最佳情况下,量子和经典之间的间距为200 GHz(1.6 nm),每个经典通道之间的间距为50 GHz(0.4 nm)。当使用八个经典通道共存量子通道时,HC-NANF的量子通道共存的量子通道时,SKR被保留得无明显的变化,而使用SMF在-24 dbm总共共存功率下,则在HC-NANF中的总共共存功率,比在HC-NANF中使用的功率低250倍。在使用相同功率的最坏情况下,量子和经典通道之间的间距为1 Thz(8 nm),SKR使用HC-NANF下降了10%,而在SMF中,SKR跌至零。
The feasibility of coexisting a quantum channel with carrier-grade classical optical channels over Hollow Core Nested Antiresonant Nodeless Fibre (HC-NANF) is experimentally explored for the first time in terms of achievable quantum bit error rate (QBER), secret key rate (SKR) as well as classical signal bit error rates (BER). A coexistence transmission of 1.6 Tbps is achieved for the classical channels simultaneously with a quantum channel over a 2 km-long HC-NANF with a total coexistence power of 0 dBm. To find the best and worst wavelength position for the classical channels, we simulated different classical channels bands with different spacing between the quantum and classical channels considering the crosstalk generated from both Raman scattering and four-wave-mixing (FWM) on the quantum channel. Following our simulation, we numerically estimate the best (Raman spectrum dip) and worst locations (Raman spectrum peak) of the classical channel with respect to its impact on the performance on the quantum channel in terms of SKR and QBER. We further implemented a testbed to experimentally test both single mode fibre (SMF) and HC-NANF in the best and worst-case scenarios. In the best-case scenario, the spacing between quantum and classical is 200 GHz (1.6 nm) with 50 GHz (0.4 nm) spacing between each classical channel. The SKR was preserved without any noticeable changes when coexisting the quantum channel with eight classical channels at 0 dBm total coexistence power in HC-NANF compared to a significant drop of 73% when using SMF at -24 dBm total coexistence power which is 250 times lower than the power used in HC-NANF. In the worst-case scenario using the same powers, and with 1 THz (8 nm) spacing between quantum and classical channels, the SKR dropped 10% using the HC-NANF, whereas in the SMF the SKR plummeted to zero.