论文标题

线性系统识别中的无限维度稀疏学习

Infinite-Dimensional Sparse Learning in Linear System Identification

论文作者

Yin, Mingzhou, Akan, Mehmet Tolga, Iannelli, Andrea, Smith, Roy S.

论文摘要

正则化方法已被广泛应用于没有已知模型结构的系统识别问题。本文提出了基于原子规范正规化的无限差稀疏学习算法。原子规范正则化将传递函数分解为一阶原子模型,并解决了一个组套索问题,该问题选择了一组稀疏的杆子并识别相应的系数。解决问题的困难在于,存在无限数量的原子模型。这项工作提出了一种贪婪的算法,该算法生成了新的候选原子模型,从而最大程度地违反了现有问题的最佳条件。该算法能够以高精度来解决无限二维组的套索问题。该算法将进一步扩展以减少偏差,并分别通过迭代的自适应组套索和互补对稳定性选择在极点位置估算中拒绝误报。数值结果表明,就脉冲响应拟合和极点位置估计而言,所提出的算法的性能优于基准参数化和正则方法。

Regularized methods have been widely applied to system identification problems without known model structures. This paper proposes an infinite-dimensional sparse learning algorithm based on atomic norm regularization. Atomic norm regularization decomposes the transfer function into first-order atomic models and solves a group lasso problem that selects a sparse set of poles and identifies the corresponding coefficients. The difficulty in solving the problem lies in the fact that there are an infinite number of possible atomic models. This work proposes a greedy algorithm that generates new candidate atomic models maximizing the violation of the optimality condition of the existing problem. This algorithm is able to solve the infinite-dimensional group lasso problem with high precision. The algorithm is further extended to reduce the bias and reject false positives in pole location estimation by iteratively reweighted adaptive group lasso and complementary pairs stability selection respectively. Numerical results demonstrate that the proposed algorithm performs better than benchmark parameterized and regularized methods in terms of both impulse response fitting and pole location estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源