论文标题
肾结石在肾脏骨盆流中的作用
Role of kidney stones in renal pelvis flow
论文作者
论文摘要
我们检查了在肾结石去除的手术程序的背景下,在理想化的肾脏骨盆内的时间依赖性流动动力学,扩大了Williams等人的先前工作。 (2020,2021),他展示了涡流结构如何阻碍规范二维结构域中的质量转运。在这里,我们研究了这些涡流流结构在三维中的时间依赖性演变,并结合了刚性肾结石的存在。我们执行直接的数值模拟,以求解球形域中的瞬态Navier-Stokes方程。结果阐明了流动循环在肾脏腔中的关键作用及其对刚性石头轨迹的影响。我们证明,可以将石头与流体一起从空腔中洗出,或者通过与涡流流结构的相互作用被困在空腔中。此外,我们研究了通过动能,被夹住的流体体积以及通过对流 - 扩散方程建模的被动示踪剂的清除率的腔内流场中多个石头的影响。我们证明,与无石化的情况相比,石头存在下的流动具有更高的涡度产生。
We examine the time-dependent flow dynamics inside an idealised renal pelvis in the context of a surgical procedure for kidney stone removal, extending previous work by Williams et al. (2020,2021), who showed how vortical flow structures can hinder mass transport in a canonical two-dimensional domain. Here, we examine the time-dependent evolution of these vortical flow structures in three-dimensions, and incorporate the presence of rigid kidney stones. We perform direct numerical simulations, solving the transient Navier-Stokes equations in a spherical domain. The results shed light on the crucial role of flow circulation in the renal cavity and its effect on the trajectories of rigid stones. We demonstrate that stones can either be washed out of the cavity along with the fluid, or be trapped in the cavity via their interaction with vortical flow structures. Additionally, we study the effect of multiple stones in the flow field within the cavity in terms of the kinetic energy, entrapped fluid volume, and the clearance rate of a passive tracer modelled via an advection--diffusion equation. We demonstrate that the flow in the presence of stones features a higher vorticity production within the cavity compared with the stone-free cases.