论文标题

来自包围的暴露和事件的HDR重建

HDR Reconstruction from Bracketed Exposures and Events

论文作者

Shaw, Richard, Catley-Chandar, Sibi, Leonardis, Ales, Perez-Pellitero, Eduardo

论文摘要

高质量HDR图像的重建是现代计算摄影的核心。通过多帧HDR重建方法取得了重大进展,并产生高分辨率,准确的颜色重建,并具有高频细节。但是,它们仍然容易在动态或大量暴露的场景中失败,在这些场景中,框架未对准通常会导致可见的鬼影。最近的方法试图通过利用基于事件的相机(EBC)来减轻这种情况,该相机仅测量照明的二进制变化。尽管它们具有理想的高时间分辨率和动态范围特征,但这种方法并未表现出传统的多帧重建方法的表现,这主要是由于缺乏色彩信息和低分辨率传感器。在本文中,我们建议利用包围的LDR图像和同时捕获的事件来获得两全其美的事件:来自包装的LDR的高质量RGB信息以及来自事件的互补高频和动态范围信息。我们提出了一个基于多模式的端到端学习的HDR成像系统,该系统使用注意力和多尺度空间比对模块融合了特征域中包围的图像和事件模式。我们提出了一个新颖的事件到图像特征蒸馏模块,该模块学会了将事件特征转化为具有自学意义的图像功能空间。我们的框架通过使用滑动窗口对输入事件流进行子采样来利用事件的较高时间分辨率,从而丰富了我们的组合特征表示。我们提出的方法使用合成事件和真实事件超过了SOTA多帧HDR重建方法,在HDM HDR数据集上,PSNR-L和PSNR-MU的2DB和1DB改进。

Reconstruction of high-quality HDR images is at the core of modern computational photography. Significant progress has been made with multi-frame HDR reconstruction methods, producing high-resolution, rich and accurate color reconstructions with high-frequency details. However, they are still prone to fail in dynamic or largely over-exposed scenes, where frame misalignment often results in visible ghosting artifacts. Recent approaches attempt to alleviate this by utilizing an event-based camera (EBC), which measures only binary changes of illuminations. Despite their desirable high temporal resolution and dynamic range characteristics, such approaches have not outperformed traditional multi-frame reconstruction methods, mainly due to the lack of color information and low-resolution sensors. In this paper, we propose to leverage both bracketed LDR images and simultaneously captured events to obtain the best of both worlds: high-quality RGB information from bracketed LDRs and complementary high frequency and dynamic range information from events. We present a multi-modal end-to-end learning-based HDR imaging system that fuses bracketed images and event modalities in the feature domain using attention and multi-scale spatial alignment modules. We propose a novel event-to-image feature distillation module that learns to translate event features into the image-feature space with self-supervision. Our framework exploits the higher temporal resolution of events by sub-sampling the input event streams using a sliding window, enriching our combined feature representation. Our proposed approach surpasses SoTA multi-frame HDR reconstruction methods using synthetic and real events, with a 2dB and 1dB improvement in PSNR-L and PSNR-mu on the HdM HDR dataset, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源