论文标题

简单和高效率计算的内存体系结构中的向量

Vector In Memory Architecture for simple and high efficiency computing

论文作者

Alves, Marco Antonio Zanata, Santos, Sairo, Cordeiro, Aline S., Moreira, Francis B., Santos, Paulo C., Carro, Luigi

论文摘要

数据运动是当代系统架构的主要挑战之一。接近数据处理(NDP)通过将计算更接近内存来减轻此问题,从而避免了过多的数据移动。我们的建议矢量内存架构(VIMA)使用矢量功能单元在3D堆叠的内存附近执行大型矢量说明,并使用小型数据缓存来启用短期数据重复使用。它提供了一个简单的编程界面,并保证了精确的例外。当使用单个核心执行溪流行为的应用程序时,VIMA在CPU系统基线上提供高达26倍的速度,而单核处理器中的矢量操作,同时花费93%的能量。

Data movement is one of the main challenges of contemporary system architectures. Near-Data Processing (NDP) mitigates this issue by moving computation closer to the memory, avoiding excessive data movement. Our proposal, Vector-In-Memory Architecture(VIMA), executes large vector instructions near 3D-stacked memories using vector functional units and uses a small data cache to enable short-term data reuse. It provides an easy programming interface and guarantees precise exceptions. When executing stream-behaved applications using a single core, VIMA offers a speedup of up to 26x over a CPU system baseline with vector operations in a single-core processor while spending 93% less energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源