论文标题
Ravir:用于视网膜动脉和静脉的语义分割和定量分析红外反射成像中的数据集和方法
RAVIR: A Dataset and Methodology for the Semantic Segmentation and Quantitative Analysis of Retinal Arteries and Veins in Infrared Reflectance Imaging
论文作者
论文摘要
视网膜脉管系统提供了诊断和监测全身性疾病在内的重要线索,包括高血压和糖尿病。在这种情况下,微血管系统是主要参与,视网膜是唯一可以直接观察到微脉管系统的解剖部位。长期以来,对视网膜血管的客观评估被认为是全身血管疾病的替代生物标志物,并且随着视网膜成像和计算机视觉技术的最新进展,该主题已成为重新注意的主题。在本文中,我们介绍了一个新颖的数据集,称为Ravir,用于在红外反射率(IR)成像中对视网膜动脉和静脉的语义分割。它可以创建基于深度学习的模型,该模型可区分提取的容器类型而无需大量的后处理。我们提出了一种新型的基于深度学习的方法,称为segravir,用于视网膜动脉和静脉的语义分割以及对分段血管宽度的定量测量。我们的广泛实验验证了丝绒里的有效性,并证明了其与最先进模型相比的出色性能。此外,我们为Ravir预告片在颜色图像上的域适应性域提出了一个知识蒸馏框架。我们证明我们的训练过程在驱动器,凝视和Chase_DB1数据集上产生新的最新基准测试。数据集链接:https://ravirdataset.github.io/data/
The retinal vasculature provides important clues in the diagnosis and monitoring of systemic diseases including hypertension and diabetes. The microvascular system is of primary involvement in such conditions, and the retina is the only anatomical site where the microvasculature can be directly observed. The objective assessment of retinal vessels has long been considered a surrogate biomarker for systemic vascular diseases, and with recent advancements in retinal imaging and computer vision technologies, this topic has become the subject of renewed attention. In this paper, we present a novel dataset, dubbed RAVIR, for the semantic segmentation of Retinal Arteries and Veins in Infrared Reflectance (IR) imaging. It enables the creation of deep learning-based models that distinguish extracted vessel type without extensive post-processing. We propose a novel deep learning-based methodology, denoted as SegRAVIR, for the semantic segmentation of retinal arteries and veins and the quantitative measurement of the widths of segmented vessels. Our extensive experiments validate the effectiveness of SegRAVIR and demonstrate its superior performance in comparison to state-of-the-art models. Additionally, we propose a knowledge distillation framework for the domain adaptation of RAVIR pretrained networks on color images. We demonstrate that our pretraining procedure yields new state-of-the-art benchmarks on the DRIVE, STARE, and CHASE_DB1 datasets. Dataset link: https://ravirdataset.github.io/data/