论文标题

超低量子气体的量子光学:超出耗散的开放系统(HABILITITINT论文)

Quantum optics of ultracold quantum gases: open systems beyond dissipation (habilitation thesis)

论文作者

Mekhov, Igor B.

论文摘要

量子光学元件和超速气体已建立,但几乎没有重叠:在超低原子上的作品中,光的量子性质通常被忽略。在我们的工作中,光和超低物质的量子性起着关键作用。首先,我们表明光是多体阶段的量子非约束(QND)探针:可以通过相关和完整的分布函数来区分它们(我们考虑玻色子,费米子和偶极分子)。光不仅对密度敏感,而且对物质场干扰敏感。其次,我们证明了测量反向构成了多体系统中竞争的新来源,尤其是对于非QND情况。这导致了许多新现象:多部分纠缠模式的振荡,费米昂配对的保护和分解,反铁磁阶,远程对隧道隧道和哈伯德模型以外的纠缠。我们证明,反馈控制会导致相变并调整其普遍性类别。第三,捕获电势的量化(量子光学晶格)导致了新的相,包括密度顺序(超olid,密度波)和物质场(超氟和超丝粘合剂,三合一)的键顺序。超速原子以外的结果包括:我们将反馈控制的范式从状态控制扩展到相变的控制。我们将测量反性作为多体物理学竞争的新来源。我们合并了量子zeno动力学和非炎性物理学,并展示了一种新型的zeno现象,其拉曼过渡超出了zeno动力学。我们基于集体光 - 物质相互作用提出量子模拟器。我们的模型可以应用于其他系统的阵列(Qubits)。通常,量子测量和反馈为封闭的单一系统和开放式耗散物理学而产生新的现象。

Quantum optics and ultracold gases are established fields, but they almost do not overlap: the quantum nature of light is typically neglected in works on ultracold atoms. In our work the quantumness of both light and ultracold matter plays a key role. First, we show that light is a quantum nondemolition (QND) probe of many-body phases: they can be distinguished by correlations and full distribution functions (we consider bosons, fermions, and dipolar molecules). Light is not only sensitive to densities, but also to the matter-field interference. Second, we prove that the measurement backaction constitutes a novel source of competitions in many-body systems, especially, for non-QND cases. This leads to a plethora of new phenomena: oscillations of multipartite entangled modes, protection and break-up of fermion pairs, antiferromagnetic orders, long-range pair tunnelling and entanglement beyond Hubbard models. We prove that feedback control induces phase transitions and tunes their universality class. Third, the quantization of trapping potential (quantum optical lattices) leads to novel phases, including both density orders (supersolids, density waves) and bond orders of matter fields (superfluid and supersolid dimers, trimers). Results beyond ultracold atoms include: We extend the paradigm of feedback control from the state control to control of phase transitions. We present the measurement backaction as a novel source of competitions in many-body physics. We merge quantum Zeno dynamics and non-Hermitian physics and show a novel type of Zeno phenomena with Raman transitions beyond Zeno dynamics. We propose quantum simulators based on collective light-matter interaction. Our models can be applied to arrays of other systems (qubits). In general, quantum measurements and feedback produce new phenomena untypical to both closed unitary systems and open dissipative ones in many-body physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源