论文标题
超临界黑洞积聚的长期演变与流出:宇宙学模拟的亚网格反馈模型
Long-term evolution of supercritical black hole accretion with outflows: a subgrid feedback model for cosmological simulations
论文作者
论文摘要
我们以比Eddington值高的速率($ \ dot {M} _ {\ rm EDD} $)研究了轴对称积聚流到黑洞(BH)的全局结构的长期演变,执行二维水力学模拟,而具有辐射扩散。在高核的光学上厚度极限中,辐射能有效地被捕获在流入中,积聚流量变为绝热,并包括赤道区域中的湍流气体和强烈的双极外流。结果,质量流入率以$ \ dot {m} _ {\ rm in} \ propto r^{p} $,$ p \ sim 0.5-0.7 $降低,而流入气体的一小部分则使核BH馈入核BH。因此,仅当从较大的半径以$> 100-1000〜 \ dot {m} _ {\ rm edd} $提供大量的气体时,超级 - 埃德丁顿的积聚才能维持。该流的全球结构在BH事件范围内数以百万计的轨道时间尺度下降到准稳态,该状态比以前(Magneto-)RHD仿真研究所述的$> 10-100美元$> 10-100美元。通过辐射扩散的能量传输可以加速内部区域的极点附近的流出,但与没有扩散的情况相比不会改变积聚流的总体特性。基于我们的仿真结果,我们为超级埃德丁顿BHS提供了机械反馈模型。这可以用作不充分解决银河系核的大规模宇宙学模拟中的子网格模型,并通过密集的环境中的积聚来形成最重的引力波源。
We study the long-term evolution of the global structure of axisymmetric accretion flows onto a black hole (BH) at rates substantially higher than the Eddington value ($\dot{M}_{\rm Edd}$), performing two-dimensional hydrodynamical simulations with and without radiative diffusion. In the high-accretion optically-thick limit, where the radiation energy is efficiently trapped within the inflow, the accretion flow becomes adiabatic and comprises of turbulent gas in the equatorial region and strong bipolar outflows. As a result, the mass inflow rate decreases toward the center as $\dot{M}_{\rm in}\propto r^{p}$ with $p\sim 0.5-0.7$ and a small fraction of the inflowing gas feeds the nuclear BH. Thus, super-Eddington accretion is sustained only when a larger amount of gas is supplied from larger radii at $> 100-1000~\dot{M}_{\rm Edd}$. The global structure of the flow settles down to a quasi-steady state in millions of the orbital timescale at the BH event horizon, which is $> 10-100$ times longer than that addressed in previous (magneto-)RHD simulation studies. Energy transport via radiative diffusion accelerates the outflow near the poles in the inner region but does not change the overall properties of the accretion flow compared to the cases without diffusion. Based on our simulation results, we provide a mechanical feedback model for super-Eddington accreting BHs. This can be applied as a sub-grid model in large-scale cosmological simulations that do not sufficiently resolve galactic nuclei, and to the formation of the heaviest gravitational-wave sources via accretion in dense environments.