论文标题

电荷纳米毛细血管中电解质溶液的热电效应和温度梯度驱动的电动流动流动

Thermoelectric effect and temperature-gradient-driven electrokinetic flow of electrolyte solutions in charged nanocapillaries

论文作者

Zhang, Wenyao, Wang, Qiuwang, Zeng, Min, Zhao, Cunlu

论文摘要

提出了一项针对带电纳米毛细血管中电解质溶液的热电效应和温度梯度驱动的电动流动流的系统理论研究。该研究基于通过润滑理论同时求解非等温泊松 - 尼尔斯克 - 纳维尔 - 纳维尔 - 塞托克斯方程来开发的半分析模型。尤其是,本文阐明了由于(a)流体流动引起的离子的对流传输引起的热电机制的相互作用和相对重要性,(b)离子电泳迁移率对温度的依赖性,(c)阳离子和阴离子的固有性索累累蛋白系数的差异。此外,提出了三种热电机制完全合作的协同条件,以用于热恐惧/哲学电解质。温度梯度驱动的电动流动被证明是一种几乎单向流动的流动,其轴向速度的轮廓随轴向位置而变化。同样,可以将流量视为是由热电场驱动的电流动流与由渗透压梯度和介电体力驱动的热渗透流量之间的反作用或合作的结果。此外,证明Seebeck系数和流体平均速度受到电解质相关参数的影响。结果有益于理解纳米毛细血管中温度梯度驱动的电动传输,也是低级废热恢复装置和热湿度泵设计的理论基础。

A systematic theoretical study of thermoelectric effect and temperature-gradient-driven electrokinetic flow of electrolyte solutions in charged nanocapillaries is presented. The study is based on a semianalytical model developed by simultaneously solving the non-isothermal Poisson-Nernst-Planck-Navier-Stokes equations with the lubrication theory. Particularly, this paper clarifies the interplay and relative importance of the thermoelectric mechanisms due to (a) the convective transport of ions caused by the fluid flow, (b) the dependence of ion electrophoretic mobility on temperature, (c) the difference in the intrinsic Soret coefficients of cation and anion. Additionally, synergy conditions for the three thermoelectric mechanisms to fully cooperate are proposed for thermo-phobic/philic electrolytes. The temperature-gradient-driven electrokinetic flow is shown to be a nearly unidirectional flow whose axial velocity profiles vary with the axial location. Also, the flow can be regarded as a consequence of the counteraction or cooperation between a thermoelectric-field-driven electroosmotic flow and a thermo-osmotic flow driven by the osmotic pressure gradient and dielectric body force. Moreover, the Seebeck coefficient and the fluid average velocity are demonstrated to be affected by electrolyte-related parameters. The results are beneficial for understanding the temperature-gradient-driven electrokinetic transport in nanocapillaries and also serve as theoretical foundation for the design of low-grade waste heat recovery devices and thermoosmotic pumps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源