论文标题

通过布尔规则解释,用户驱动的模型调整

User Driven Model Adjustment via Boolean Rule Explanations

论文作者

Daly, Elizabeth M., Mattetti, Massimiliano, Alkan, Öznur, Nair, Rahul

论文摘要

AI解决方案在很大程度上取决于输入培训数据的质量和准确性,但是培训数据可能并不总是完全反映最新的政策格局,或者可能缺少业务逻辑。解释性的进步开放了允许用户与ML预测的可解释说明进行交互的可能性,以便更准确地反映系统的当前现实情况,以注入修改或约束。在本文中,我们提出了一个解决方案,该解决方案利用ML模型的预测能力,同时允许用户指定对决策边界的修改。我们的互动覆盖方法实现了这一目标,而无需模型再培训,这使得它适用于需要立即更改其决策的系统。我们证明可以将用户反馈规则与ML预测进行分层,以提供直接的更改,进而支持较少的数据学习。

AI solutions are heavily dependant on the quality and accuracy of the input training data, however the training data may not always fully reflect the most up-to-date policy landscape or may be missing business logic. The advances in explainability have opened the possibility of allowing users to interact with interpretable explanations of ML predictions in order to inject modifications or constraints that more accurately reflect current realities of the system. In this paper, we present a solution which leverages the predictive power of ML models while allowing the user to specify modifications to decision boundaries. Our interactive overlay approach achieves this goal without requiring model retraining, making it appropriate for systems that need to apply instant changes to their decision making. We demonstrate that user feedback rules can be layered with the ML predictions to provide immediate changes which in turn supports learning with less data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源