论文标题
重新审视阿贝尔类别中极限和界限的精确性
Exactness of limits and colimits in abelian categories revisited
论文作者
论文摘要
令$σ$为小型类别,$ \ Mathcal {a} $为$σ$ -co-complete(resp。$σ$ -COMPLETE)ABELIAN类别。众所周知的事实是,$ \ operatorname {fun}(σ,\ nathcal {a})$ $ \ mathcal {a} $ in $σ$的函数是ABELIAN类别,并且是函数$ \ MATHSF {COLIM}_σ( - ):\ operatotorName {fun}(σ,\ Mathcal {a})\ rightarrow \ Mathcal \ Mathcal {a} $(resp。 $ \ MATHSF {lim}_σ( - ):\ operatorName {fun}(σ,\ Mathcal {a})\ rightArrow \ rightarrow \ Mathcal {a} $)留下(resp。右) $κ^σ:\ MATHCAL {a} \ rightArrow \ propatatorName {fun}(σ,\ Mathcal {a})$,其中$κ^σ$是关联的常数函数。在本文中,我们将证明函数$ \ mathsf {colim}_σ( - )$(resp。$ \ \ \ \ \ \ \ \ \ \ \}_σ( - )$)是确切的,并且仅当且仅当一对fuctionors $ \ left(\ mathsf {colim}_σ(colim}_σ( - ),κ^σ\ fightort $ \ left(\ mathsf {colim}),κ^σ\ first)。 $ \ left(κ^σ,\ mathsf {lim}_σ( - )\ right)$)是Ext-Adjoint。为了应用我们的发现,我们将提供有关阿伯利亚类别中极限和限制的确切性结果的新证据。
Let $Σ$ be a small category and $\mathcal{A}$ be a $Σ$-co-complete (resp. $Σ$-complete) abelian category. It is a well-known fact that the category $\operatorname{Fun}(Σ,\mathcal{A})$ of functors of $Σ$ in $\mathcal{A}$ is an abelian category, and that the functor $\mathsf{colim}_Σ(-):\operatorname{Fun}(Σ,\mathcal{A})\rightarrow\mathcal{A}$ (resp. $\mathsf{lim}_Σ(-):\operatorname{Fun}(Σ,\mathcal{A})\rightarrow\mathcal{A}$) is left (resp. right) adjoint to $κ^Σ:\mathcal{A}\rightarrow\operatorname{Fun}(Σ,\mathcal{A})$, where $κ^Σ$ is the associated constant diagram functor. In this paper we will show that the functor $\mathsf{colim}_Σ(-)$ (resp. $\mathsf{lim}_Σ(-)$) is exact if and only if the pair of functors $\left(\mathsf{colim}_Σ(-),κ^Σ\right)$ (resp. $\left(κ^Σ,\mathsf{lim}_Σ(-)\right)$) is Ext-adjoint. As an application of our findings, we will give new proofs of known results on the exactness of limits and colimits in abelian categories.