论文标题

对简约机器人聚集体的增强学习算法的研究

A Study of Reinforcement Learning Algorithms for Aggregates of Minimalistic Robots

论文作者

Bloom, Joshua, Mukherjee, Apratim, Pinciroli, Carlo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The aim of this paper is to study how to apply deep reinforcement learning for the control of aggregates of minimalistic robots. We define aggregates as groups of robots with a physical connection that compels them to form a specified shape. In our case, the robots are pre-attached to an object that must be collectively transported to a known location. Minimalism, in our setting, stems from the barebone capabilities we assume: The robots can sense the target location and the immediate obstacles, but lack the means to communicate explicitly through, e.g., message-passing. In our setting, communication is implicit, i.e., mediated by aggregated push-and-pull on the object exerted by each robot. We analyze the ability to reach coordinated behavior of four well-known algorithms for deep reinforcement learning (DQN, DDQN, DDPG, and TD3). Our experiments include robot failures and different types of environmental obstacles. We compare the performance of the best control strategies found, highlighting strengths and weaknesses of each of the considered training algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源