论文标题

无监督的多帧单眼深度的解开对象运动和阻塞

Disentangling Object Motion and Occlusion for Unsupervised Multi-frame Monocular Depth

论文作者

Feng, Ziyue, Yang, Liang, Jing, Longlong, Wang, Haiyan, Tian, YingLi, Li, Bing

论文摘要

常规的自我监督单眼深度预测方法基于静态环境假设,这导致由于对象运动引入的不匹配和遮挡问题,导致动态场景的准确性降解。现有的以动态对象为中心的方法仅部分解决了在训练损失水平上的不匹配问题。在本文中,我们因此提出了一种新型的多框单眼深度预测方法,以在预测和监督损失水平上解决这些问题。我们的方法称为DynamicDepth,是一个新框架,该框架是通过自我监督周期一致的学习方案训练的。提出了动态对象运动解脱(DOMD)模块以解开对象运动以解决不匹配问题。此外,新颖的闭塞成本量和重新投射损失旨在减轻对象运动的闭塞作用。对CityScapes和Kitti数据集进行的广泛分析和实验表明,我们的方法显着优于最先进的单眼深度预测方法,尤其是在动态对象的领域。代码可从https://github.com/autoailab/dynamicdepth获得

Conventional self-supervised monocular depth prediction methods are based on a static environment assumption, which leads to accuracy degradation in dynamic scenes due to the mismatch and occlusion problems introduced by object motions. Existing dynamic-object-focused methods only partially solved the mismatch problem at the training loss level. In this paper, we accordingly propose a novel multi-frame monocular depth prediction method to solve these problems at both the prediction and supervision loss levels. Our method, called DynamicDepth, is a new framework trained via a self-supervised cycle consistent learning scheme. A Dynamic Object Motion Disentanglement (DOMD) module is proposed to disentangle object motions to solve the mismatch problem. Moreover, novel occlusion-aware Cost Volume and Re-projection Loss are designed to alleviate the occlusion effects of object motions. Extensive analyses and experiments on the Cityscapes and KITTI datasets show that our method significantly outperforms the state-of-the-art monocular depth prediction methods, especially in the areas of dynamic objects. Code is available at https://github.com/AutoAILab/DynamicDepth

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源