论文标题
自动销售:从轮廓图像预测多边形网格构造序列
AutoPoly: Predicting a Polygonal Mesh Construction Sequence from a Silhouette Image
论文作者
论文摘要
多边形建模是计算机图形中内容创建的核心任务。建模的复杂性,即执行它们所需的数量和操作顺序和时间,使学习和执行挑战。我们的目标是自动为给定目标得出多边形建模序列。然后,可以通过观察所得序列来学习多边形建模,并通过自动生成的结果开始加快建模过程。作为将来构建用于3D建模系统的系统的起点,我们解决了2D形状建模问题并呈现自动销售,这是一种混合方法,该方法可从轮廓图像生成多边形网格构造顺序。我们方法的关键思想是使用蒙特卡洛树搜索(MCTS)算法和可区分渲染,以分别预测顺序拓扑作用和几何作用。我们的混合方法可以改变拓扑,而最近提出的使用可区分渲染的逆形估计方法只能处理固定拓扑。我们的新颖奖励功能鼓励MCT选择拓扑作用,从而导致更简单的形状而无需自我交流。我们进一步设计了两种基于深度学习的方法,以改善MCTS搜索过程中的扩展和仿真步骤:$ n $ - 步骤“未来动作预测”网络(NFAP-NET),以生成潜在的拓扑操作的候选者,以及一个形状翘曲网络(Warpnet),以预测给定预测的呈现多边形形状的预测型呈现术语图像和拓扑。我们证明了我们的方法对多个人造对象类别的2D多边形形状的效率。
Polygonal modeling is a core task of content creation in Computer Graphics. The complexity of modeling, in terms of the number and the order of operations and time required to execute them makes it challenging to learn and execute. Our goal is to automatically derive a polygonal modeling sequence for a given target. Then, one can learn polygonal modeling by observing the resulting sequence and also expedite the modeling process by starting from the auto-generated result. As a starting point for building a system for 3D modeling in the future, we tackle the 2D shape modeling problem and present AutoPoly, a hybrid method that generates a polygonal mesh construction sequence from a silhouette image. The key idea of our method is the use of the Monte Carlo tree search (MCTS) algorithm and differentiable rendering to separately predict sequential topological actions and geometric actions. Our hybrid method can alter topology, whereas the recently proposed inverse shape estimation methods using differentiable rendering can only handle a fixed topology. Our novel reward function encourages MCTS to select topological actions that lead to a simpler shape without self-intersection. We further designed two deep learning-based methods to improve the expansion and simulation steps in the MCTS search process: an $n$-step "future action prediction" network (nFAP-Net) to generate candidates for potential topological actions, and a shape warping network (WarpNet) to predict polygonal shapes given the predicted rendered images and topological actions. We demonstrate the efficiency of our method on 2D polygonal shapes of multiple man-made object categories.