论文标题

有效的凸优化需要超线性内存

Efficient Convex Optimization Requires Superlinear Memory

论文作者

Marsden, Annie, Sharan, Vatsal, Sidford, Aaron, Valiant, Gregory

论文摘要

我们表明,任何可将$ d $二维的一阶算法限制,$ 1 $ -Lipschitz凸出的单位球的功能至$ 1/\ mathrm {poly}(d poly}(d)$精确度,最多使用$ d^{1.25-δ} $ abion 3/d^$ $ d^$ $ \ tildexe(d^)一阶查询(对于[0,1/4] $中的任何常数$δ\)。因此,这种内存约束算法的性能是比最佳$ \ tilde {o}(d)$查询通过使用$ \ tilde {o}(o}(d^2)$内存获得的平面方法获得的此问题的多项式因素。这解决了Colt 2019 Woodworth和Srebro的开放问题。

We show that any memory-constrained, first-order algorithm which minimizes $d$-dimensional, $1$-Lipschitz convex functions over the unit ball to $1/\mathrm{poly}(d)$ accuracy using at most $d^{1.25 - δ}$ bits of memory must make at least $\tildeΩ(d^{1 + (4/3)δ})$ first-order queries (for any constant $δ\in [0, 1/4]$). Consequently, the performance of such memory-constrained algorithms are a polynomial factor worse than the optimal $\tilde{O}(d)$ query bound for this problem obtained by cutting plane methods that use $\tilde{O}(d^2)$ memory. This resolves a COLT 2019 open problem of Woodworth and Srebro.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源