论文标题

MR图像超分辨率的跨模式高频变压器

Cross-Modality High-Frequency Transformer for MR Image Super-Resolution

论文作者

Fang, Chaowei, Zhang, Dingwen, Wang, Liang, Zhang, Yulun, Cheng, Lechao, Han, Junwei

论文摘要

改善磁共振的分辨率(MR)图像数据对于计算机辅助诊断和大脑功能分析至关重要。更高的分辨率有助于捕获更详细的内容,但通常会导致较低的信噪比和更长的扫描时间。为此,MR Image超级分辨率在近期已成为一个广泛的话题。现有作品建立了基于卷积神经网络(CNN)的常规体系结构建立广泛的深层模型。在这项工作中,为了进一步推进该研究领域,我们尽早努力建立一个基于变压器的MR图像超级分辨率框架,并仔细设计了探索有价值的领域的先验知识。具体而言,我们考虑了包括高频结构先验和模式间环境在内的两倍领域先验,并建立了一种新型的变压器结构,称为跨模式高频变压器(COHF-T),将此类先验引入超级分辨率的低分辨率(LR)MR图像中。两个数据集的实验表明COHF-T可以实现新的最新性能。

Improving the resolution of magnetic resonance (MR) image data is critical to computer-aided diagnosis and brain function analysis. Higher resolution helps to capture more detailed content, but typically induces to lower signal-to-noise ratio and longer scanning time. To this end, MR image super-resolution has become a widely-interested topic in recent times. Existing works establish extensive deep models with the conventional architectures based on convolutional neural networks (CNN). In this work, to further advance this research field, we make an early effort to build a Transformer-based MR image super-resolution framework, with careful designs on exploring valuable domain prior knowledge. Specifically, we consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior, and establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution (LR) MR images. Experiments on two datasets indicate that Cohf-T achieves new state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源