论文标题

UNSHADOWNET:照明评论家指导对比度学习,以删除阴影

UnShadowNet: Illumination Critic Guided Contrastive Learning For Shadow Removal

论文作者

Dasgupta, Subhrajyoti, Das, Arindam, Yogamani, Senthil, Das, Sudip, Eising, Ciaran, Bursuc, Andrei, Bhattacharya, Ujjwal

论文摘要

阴影经常遇到自然现象,这些现象极大地阻碍了在实际环境中,例如自主驾驶中的计算机视觉感知系统的性能。解决方案的方法是在处理系统处理之前从图像中消除阴影区域。然而,训练这样的解决方案需要一对成对的对齐的阴影和非阴影图像,这些图像难以获得。我们介绍了一个新型的弱监督的阴影去除框架,unshadownet使用对比度学习训练。它由负责在照明网络的指导下删除提取的阴影的DeShadower网络组成,该网络受到照明评论家对抗的训练和改进网络,以进一步删除人工制品。我们表明,Unshadownet可以轻松地扩展到完全监督的设置,以在可用时利用地面真相。在弱和完全监督的设置中,Unshadownet在三个公开可用的影子数据集(ISTD,调整后的ISTD,srd)上胜过现有的最新方法。

Shadows are frequently encountered natural phenomena that significantly hinder the performance of computer vision perception systems in practical settings, e.g., autonomous driving. A solution to this would be to eliminate shadow regions from the images before the processing of the perception system. Yet, training such a solution requires pairs of aligned shadowed and non-shadowed images which are difficult to obtain. We introduce a novel weakly supervised shadow removal framework UnShadowNet trained using contrastive learning. It is composed of a DeShadower network responsible for the removal of the extracted shadow under the guidance of an Illumination network which is trained adversarially by the illumination critic and a Refinement network to further remove artefacts. We show that UnShadowNet can be easily extended to a fully-supervised set-up to exploit the ground-truth when available. UnShadowNet outperforms existing state-of-the-art approaches on three publicly available shadow datasets (ISTD, adjusted ISTD, SRD) in both the weakly and fully supervised setups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源