论文标题

标态曲率分裂II:去除奇异性

Scalar Curvature Splittings II: Removal of Singularities

论文作者

Lohkamp, Joachim

论文摘要

在本文的第一部分中,我们已经看到,在积极标态曲率歧管中的任何奇异紧凑型面积最小化都承认,对某些最小因素几何形状的形式具有相互构型变形,该几何形状具有许多与最小化的特性,例如AHLFORS的规律性,繁极性不平等的有效性以及具有正质量质量质量曲率的分线锥的有效性。在本第二部分中,我们表明这些几何形状承认了手术风格的论证,消除了奇异场景。

In Part I of this paper we have seen that any singular compact area minimizer in a positive scalar curvature manifold admits a conformal deformation to some minimal factor geometry that shares many properties with the minimizer, like the Ahlfors regularity, the validity of Poincare inequalities and the presence of tangent cones with positive scalar curvature. In this Part II we show that these geometries admit surgery style arguments eliminating the singular sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源