论文标题

基于标签层次结构的不变性学习

Invariance Learning based on Label Hierarchy

论文作者

Toyota, Shoji, Fukumizu, Kenji

论文摘要

深度神经网络继承了嵌入在训练数据中的虚假相关性,因此可能无法预测看不见的域(或环境)上所需的标签,这些标签与培训中使用的域不同。最近已经开发了不变性学习(IL),以克服这一缺点; IL使用许多域中的训练数据,估计了这种预测因子,这是变化域的不变性。但是,在多个域中培训数据的要求是IL的强大限制,因为它通常需要高注释成本。我们提出了一个新颖的IL框架来克服这个问题。假设来自多个域的数据可用于更高级别的分类任务(标签成本较低),我们估计目标分类任务的不变预测指标,并使用单个域中的训​​练数据进行培训。此外,我们提出了两种用于选择不变性正规化超参数的交叉验证方法,以解决超参数选择的问题,在现有的IL方法中尚未正确处理。从经验上证明了所提出的框架的有效性,包括交叉验证,并且在某些条件下证明了超参数选择的正确性。

Deep Neural Networks inherit spurious correlations embedded in training data and hence may fail to predict desired labels on unseen domains (or environments), which have different distributions from the domain used in training. Invariance Learning (IL) has been developed recently to overcome this shortcoming; using training data in many domains, IL estimates such a predictor that is invariant to a change of domain. However, the requirement of training data in multiple domains is a strong restriction of IL, since it often needs high annotation cost. We propose a novel IL framework to overcome this problem. Assuming the availability of data from multiple domains for a higher level of classification task, for which the labeling cost is low, we estimate an invariant predictor for the target classification task with training data in a single domain. Additionally, we propose two cross-validation methods for selecting hyperparameters of invariance regularization to solve the issue of hyperparameter selection, which has not been handled properly in existing IL methods. The effectiveness of the proposed framework, including the cross-validation, is demonstrated empirically, and the correctness of the hyperparameter selection is proved under some conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源