论文标题
非线性渗透过滤的快速和稳定方案
Fast and stable schemes for non-linear osmosis filtering
论文作者
论文摘要
我们考虑了传输扩散渗透模型的非线性变体,用于解决各种成像问题,例如阴影/软灯去除和紧凑的数据表示。非线性行为是根据具有合适属性的一般标量函数G来编码的,这可以平衡图像不同区域上的扩散强度,同时防止平滑伪像。对于所提出的模型,证明了保护特性(强度和非阴性),并为G的特定选择显示了各种解释。在适当的空间离散化后,考虑了明确和半上限的迭代方案,分别证明了收敛限制和无条件稳定性。为了验证所考虑的数值方案的拟议建模和计算速度,我们报告了阴影/光点去除和紧凑的数据表示问题的几个结果和比较,表明与标准线性和各向异性模型和态度模型以及现有的艺术方法相比,获得了无伪影和计算效率的结果。
We consider a non-linear variant of the transport-diffusion osmosis model for solving a variety of imaging problems such as shadow/soft-light removal and compact data representation. The non-linear behaviour is encoded in terms of a general scalar function g with suitable properties, which allows to balance the diffusion intensity on the different regions of the image while preventing smoothing artefacts. For the proposed model, conservation properties (intensity and non-negativity) are proved and a variational interpretation is showed for specific choices of g. Upon suitable spatial discretisation, both an explicit and a semi-implicit iterative scheme are considered, for which convergence restrictions and unconditional stability are proved, respectively. To validate the proposed modelling and the computational speed of the numerical schemes considered, we report several results and comparisons for the problem of shadow/light-spot removal and compact data representation, showing that artefact-free and computationally efficient results are obtained in comparison to standard linear and anisotropic models, and state-of-the art approaches.