论文标题

学习稀疏混合模型

Learning Sparse Mixture Models

论文作者

Ba, Fatima Antarou

论文摘要

这项工作通过包裹的高斯和von mises分布的混合物近似具有类似方差分析的稀疏结构的高维密度函数。当尺寸$ d $很大时,由于维度的诅咒,通常通过通常已知的学习算法来训练模型参数。因此,假设模型的每个组件都取决于一个先验的未知变量数量要比空间维度$ d少得多,那么我们首先定义了一个算法,该算法通过Kolmogorov-Smirnov和相关测试来确定混合模型的活动变量集。然后将学习过程限制为一个活动变量集,我们迭代地确定边缘密度函数的变量相互作用集,并通过kolmogorov同时学习参数,并相关系数统计统计测试以及近端期望 - 近距离示数算法。如数值示例所示,学习过程大大降低了算法对输入尺寸$ d $的复杂性,并提高了给定样品的模型的准确性。

This work approximates high-dimensional density functions with an ANOVA-like sparse structure by the mixture of wrapped Gaussian and von Mises distributions. When the dimension $d$ is very large, it is complex and impossible to train the model parameters by the usually known learning algorithms due to the curse of dimensionality. Therefore, assuming that each component of the model depends on an a priori unknown much smaller number of variables than the space dimension $d,$ we first define an algorithm that determines the mixture model's set of active variables by the Kolmogorov-Smirnov and correlation test. Then restricting the learning procedure to the set of active variables, we iteratively determine the set of variable interactions of the marginal density function and simultaneously learn the parameters by the Kolmogorov and correlation coefficient statistic test and the proximal Expectation-Maximization algorithm. The learning procedure considerably reduces the algorithm's complexity for the input dimension $d$ and increases the model's accuracy for the given samples, as the numerical examples show.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源