论文标题
从MMW图像中探索人体质地以供人识别
Exploring Body Texture from mmW Images for Person Recognition
论文作者
论文摘要
使用毫米波(MMW)进行成像具有许多优势,包括穿透诸如衣服和聚合物之类的模糊剂的能力。在探索了从MMW图像中获取的形状信息以获得人识别后,在这项工作中,我们旨在获得一些有关使用MMW纹理信息进行同一任务的潜力的见解,不仅是MMW脸,还考虑MMW Torso和MMW Wholeds。我们使用MMW TNO数据库报告了实验结果,该数据库由50个个体组成,该数据库基于Alexnet和VGG-FACE预验证的卷积神经网络(CNN)模型的手工制作和学习的功能。首先,我们分析了三个MMW身体部位的个体性能,得出的结论是:i)MMW躯干区域比MMW脸和整个身体更具区分性,II)CNN功能与MMW面上的手工制作的特征和整个身体的手工制作的功能相比,以及III的手工制作的特征,以及III)手工制作的特征在MMW Torso上略微超越了MMW Torso的特征。在这项工作的第二部分中,我们分析了不同的多含量和多模式技术,包括一种新型的基于CNN的融合技术,将验证结果提高到2%EER和鉴定Rank-1结果最高99%。还报道了在可见光和NIR光谱带中使用MMW体形信息和面部识别的比较分析。
Imaging using millimeter waves (mmWs) has many advantages including the ability to penetrate obscurants such as clothes and polymers. After having explored shape information retrieved from mmW images for person recognition, in this work we aim to gain some insight about the potential of using mmW texture information for the same task, considering not only the mmW face, but also mmW torso and mmW wholebody. We report experimental results using the mmW TNO database consisting of 50 individuals based on both hand-crafted and learned features from Alexnet and VGG-face pretrained Convolutional Neural Networks (CNN) models. First, we analyze the individual performance of three mmW body parts, concluding that: i) mmW torso region is more discriminative than mmW face and the whole body, ii) CNN features produce better results compared to hand-crafted features on mmW faces and the entire body, and iii) hand-crafted features slightly outperform CNN features on mmW torso. In the second part of this work, we analyze different multi-algorithmic and multi-modal techniques, including a novel CNN-based fusion technique, improving verification results to 2% EER and identification rank-1 results up to 99%. Comparative analyses with mmW body shape information and face recognition in the visible and NIR spectral bands are also reported.