论文标题

非热远程系统中的浮雕拓扑特性,具有复杂的跳跃幅度

Floquet topological properties in the Non-Hermitian long-range system with complex hopping amplitudes

论文作者

Guo, Gang-Feng, Wang, Yan, Bao, Xi-Xi, Tan, Lei

论文摘要

近年来,物质的非平衡阶段引起了很多关注,其中Floquet阶段是热点。在这项工作中,基于定期驾驶非热模型,我们揭示了Bloch带理论框架中计算出的绕组数与边缘状态的数量直接连接,甚至存在非热性。此外,我们发现跳跃幅度阶段的变化可以诱导拓扑相变。确切地说,该相值的增加可以使系统进入更大的拓扑阶段。此外,可以揭示的是,纯粹想象的跳跃术语的引入带来了非常丰富的相图。此外,如果我们仅考虑下一个最新的邻居跳跃术语,我们可以从无限绕组的数字中选择偶数不变。在这里,获得的结果可能对理解定期驾驶非官员理论很有用。

Non-equilibrium phases of matter have attracted much attention in recent years, among which the Floquet phase is a hot point. In this work, based on the Periodic driving Non-Hermitian model, we reveal that the winding number calculated in the framework of the Bloch band theory has a direct connection with the number of edge states even the Non-Hermiticity is present. Further, we find that the change of the phase of the hopping amplitude can induce the topological phase transitions. Precisely speaking, the increase of the value of the phase can bring the system into the larger topological phase. Moreover, it can be unveiled that the introduction of the purely imaginary hopping term brings an extremely rich phase diagram. In addition, we can select the even topological invariant exactly from the unlimited winding numbers if we only consider the next-nearest neighbor hopping term. Here, the results obtained may be useful for understanding the Periodic driving Non-Hermitian theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源