论文标题
用约旦产品下的平均变换通勤地图
Commuting maps with the Mean Transform under Jordan product
论文作者
论文摘要
在本文中,我们对约旦产品下的平均变换通勤的徒图进行了完整的表征。主要结果是: 令$ h,k $是两个复杂的希尔伯特空间,$φ:b(h)\ to b(k)$是一张徒地图,然后 $$ \ MATHCAL {m}(φ(a)\ Circc(B))=φ(\ Mathcal {M}(A \ Circ B))\; \; \ text {for all} \; \; \; a,b \ in B(h)$$ 且仅当存在一个统一或反独立的操作员$ u:h \ to k $时, $$φ(t)= utu^* \; \ text {for All} \; t \ in B(h)。$$
In this article, we give a complete characterization of the bijective maps which commute with the mean transform under Jordan product. The main result is the following : Let $H,K$ be two complex Hilbert spaces and $Φ:B(H) \to B(K)$ be a bijective map, then $$ \mathcal {M}(Φ(A)\circΦ(B))=Φ(\mathcal{M}(A\circ B)) \;\; \text{for all}\;\; A, B \in B(H)$$ if and only if there exists a unitary or anti-unitary operator $U:H\to K $ such that, $$ Φ(T)= UTU^* \; \text{for all} \;T\in B(H).$$