论文标题

迈向时空意识到的流量时间序列预测 - Full版本

Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full Version

论文作者

Cirstea, Razvan-Gabriel, Yang, Bin, Guo, Chenjuan, Kieu, Tung, Pan, Shirui

论文摘要

由于复杂的时空动力学时间序列序列序列序列序列序列序列序列序列序列序列很大,但通常具有不同的模式。在同一时间序列中,模式可能会随着时间的流逝而变化,例如,一天中存在某些时期,显示出更强的时间相关性。尽管最近的预测模型,尤其是基于深度学习的模型,但显示出令人鼓舞的结果,但它们因时空不可知论而受苦。这种时空的不可知论模型采用共享参数空间,无论时间序列位置和时间段,他们都假设时间模式在各个位置之间相似,并且不会跨时间演化,从而可能并不总是会持续下去。在这项工作中,我们提出了一个框架,旨在将时空的不可知论模型转变为时空意识到的模型。为此,我们将时间序列从不同位置编码为随机变量,我们从中生成特定于位置和时变模型参数,以更好地捕获时空动力学。我们展示了如何将框架与规范的注意力集成在一起,以实现时空意识的关注。接下来,为了弥补时空意识到的模型参数生成过程引入的额外开销,我们提出了一种新颖的窗户注意力方案,这有助于降低从二次到线性的复杂性,从而使时空时代的意识注意也具有竞争力的效率。我们在四个流量时间序列数据集上展示了有力的经验证据,在精确性和效率方面,提议的时空意识关注的注意力优于最先进的方法。这是出现在ICDE 2022 [1]中的“对时空意识的交通时间序列预测”的扩展版本,包括其他实验结果。

Traffic time series forecasting is challenging due to complex spatio-temporal dynamics time series from different locations often have distinct patterns; and for the same time series, patterns may vary across time, where, for example, there exist certain periods across a day showing stronger temporal correlations. Although recent forecasting models, in particular deep learning based models, show promising results, they suffer from being spatio-temporal agnostic. Such spatio-temporal agnostic models employ a shared parameter space irrespective of the time series locations and the time periods and they assume that the temporal patterns are similar across locations and do not evolve across time, which may not always hold, thus leading to sub-optimal results. In this work, we propose a framework that aims at turning spatio-temporal agnostic models to spatio-temporal aware models. To do so, we encode time series from different locations into stochastic variables, from which we generate location-specific and time-varying model parameters to better capture the spatio-temporal dynamics. We show how to integrate the framework with canonical attentions to enable spatio-temporal aware attentions. Next, to compensate for the additional overhead introduced by the spatio-temporal aware model parameter generation process, we propose a novel window attention scheme, which helps reduce the complexity from quadratic to linear, making spatio-temporal aware attentions also have competitive efficiency. We show strong empirical evidence on four traffic time series datasets, where the proposed spatio-temporal aware attentions outperform state-of-the-art methods in term of accuracy and efficiency. This is an extended version of "Towards Spatio-Temporal Aware Traffic Time Series Forecasting", to appear in ICDE 2022 [1], including additional experimental results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源