论文标题

使用复发光谱切片神经网络的高速光子神经形态计算

High Speed Photonic Neuromorphic Computing Using Recurrent Optical Spectrum Slicing Neural Networks

论文作者

Sozos, K., Bogris, A., Bienstman, P., Sarantoglou, G., Deligiannidis, S., Mesaritakis, C.

论文摘要

在光子硬件中实施的神经形态计算是以Picsecond量表实现机器学习处理的最有希望的路线之一,并具有最低的功耗。在这项工作中,我们提出了一个新概念,用于实现光子复发性神经网络和储层计算体系结构,并使用复发光谱切片。这是通过放置在循环中的简单光学过滤器来完成的,每个滤波器都会处理传入光学信号的特定光谱切片。我们方案中的突触权重等于过滤器中心频率和带宽。这种新的方法用于在光子域中实施复发性神经加工,我们称之为复发性光谱切片神经网络,在数值上评估了一项苛刻的,与行业相关的任务,例如高波德光学信号均衡100 GBAUD,表现出突破性的性能。与最先进的解决方案相比,绩效增强功能通过将覆盖范围加倍,同时将复杂性和功耗降低10倍,从而超过最新的数字处理技术。在这方面,Ross-NNS可以为实施用于处理光学通信和高速成像应用中高带宽光学信号的超高光电硬件加速器的实施铺平道路

Neuromorphic Computing implemented in photonic hardware is one of the most promising routes towards achieving machine learning processing at the picosecond scale, with minimum power consumption. In this work, we present a new concept for realizing photonic recurrent neural networks and reservoir computing architectures with the use of recurrent optical spectrum slicing. This is accomplished through simple optical filters placed in an loop, where each filter processes a specific spectral slice of the incoming optical signal. The synaptic weights in our scheme are equivalent to filters central frequencies and bandwidths. This new method for implementing recurrent neural processing in the photonic domain, which we call Recurrent Optical Spectrum Slicing Neural Networks, is numerically evaluated on a demanding, industry-relevant task such as high baud rate optical signal equalization 100 Gbaud, exhibiting ground-breaking performance. The performance enhancement surpasses state-of-the-art digital processing techniques by doubling the reach while minimizing complexity and power consumption by a factor of 10 compared to state-of-the-art solutions. In this respect, ROSS-NNs can pave the way for the implementation of ultra-efficient photonic hardware accelerators tailored for processing high-bandwidth optical signals in optical communication and high-speed imaging applications

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源