论文标题
转移性乳腺癌细胞中的尖端分叉
Cusp Bifurcation in Metastatic Breast Cancer Cells
论文作者
论文摘要
普通的微分方程(ODE)可以随着时间的推移建模细胞态的过渡。分叉理论是动态系统的一个分支,研究了ode系统行为的变化,而一个或多个参数则变化。我们发现,分叉理论中的概念可以应用于模型转移性细胞行为。我们的结果表明,特定现象称为尖叉分叉如何描述转移性细胞态跃迁,分离了两个质量上不同的过渡方式。此外,我们展示了尖端分叉如何模拟其他遗传网络,并将分叉后的动力学与观察到进入细胞周期的现象相关联。
Ordinary differential equations (ODEs) can model the transition of cell states over time. Bifurcation theory is a branch of dynamical systems which studies changes in the behavior of an ODE system while one or more parameters are varied. We have found that concepts in bifurcation theory may be applied to model metastatic cell behavior. Our results show how a specific phenomenon called a cusp bifurcation describes metastatic cell state transitions, separating two qualitatively different transition modalities. Moreover, we show how the cusp bifurcation models other genetic networks, and we relate the dynamics after the bifurcation to observed phenomena in commitment to enter the cell cycle.