论文标题
在可调的间隙 - 平面跨表面吸收器中阐明温度动力学和热电子产生
Unraveling the temperature dynamics and hot electron generation in tunable gap-plasmon metasurface absorbers
论文作者
论文摘要
在超薄金属纳米胶质中形成的局部等离子体可导致入射光的强烈吸收。基于此效果的等离子体元面可以有效地产生能量荷载流子(也称为热电子),这是因为它们具有挤压和增强电磁磁场的能力。但是,准确地识别和量化热载体的动力学是非常具有挑战性的,这主要是由于它们的超快时间衰减。它们的非平衡温度响应是缺少的关键因素之一,即了解短时间衰减和整体瞬态可调吸收性能的间隙 - 平面元时间。在这里,我们使用两个温度模型系统地研究热电子的温度动力学及其过渡到从FEMTO到纳秒的各个时标的热载体。此外,使用流体动力学非本地模型方法研究了热电子温度和发电率阈值,该方法在考虑超薄间隙时更准确。在等离子诱导的晶格加热之前,使用派生的温度依赖材料特性在吸收光谱中研究超快的瞬态非线性修饰,从而实现有效的可调纳米光子吸收剂设计。我们还检查了这些等离子吸收器在各种脉冲激光照明下的损伤阈值,这是一种重要的数量,以得出最终的输入强度极限,可用于各种新兴的非线性光学元件和其他可调的纳米光子应用。提出的结果阐明了热电子在间隙 - 平面跨表面吸收器的响应中的作用,这些吸收剂可用于设计更有效的光催化,光伏和光电检测设备。
Localized plasmons formed in ultrathin metallic nanogaps can lead to robust absorption of incident light. Plasmonic metasurfaces based on this effect can efficiently generate energetic charge carriers, also known as hot electrons, owing to their ability to squeeze and enhance electromagnetic fields in confined subwavelength spaces. However, it is very challenging to accurately identify and quantify the dynamics of hot carriers, mainly due to their ultrafast time decay. Their non-equilibrium temperature response is one of the key factors missing to understand the short time decay and overall transient tunable absorption performance of gap-plasmon metasurfaces. Here, we systematically study the temperature dynamics of hot electrons and their transition into thermal carriers at various timescales from femto to nanoseconds by using the two-temperature model. Additionally, the hot electron temperature and generation rate threshold values are investigated by using a hydrodynamic nonlocal model approach that is more accurate when ultrathin gaps are considered. The derived temperature dependent material properties are used to study the ultrafast transient nonlinear modification in the absorption spectrum before plasmon-induced lattice heating is established leading to efficient tunable nanophotonic absorber designs. We also examine the damage threshold of these plasmonic absorbers under various pulsed laser illuminations, an important quantity to derive the ultimate input intensity limits that can be used in various emerging nonlinear optics and other tunable nanophotonic applications. The presented results elucidate the role of hot electrons in the response of gap-plasmon metasurface absorbers which can be used to design more efficient photocatalysis, photovoltaics, and photodetection devices.