论文标题
$^4 {\ rm He}(d,γ)\,^6 \ rm li $ big Bang辐射捕获
Ab initio prediction of the $^4{\rm He}(d,γ)\,^6\rm Li$ big bang radiative capture
论文作者
论文摘要
氦气($^4 $ he)和氘($ d $)保险丝一起生产锂6($^6 $ li)和$γ$ ray,$^4 $ he $ he $(d,γ)^6 $ li,这是一个至关重要的难题,这是解决大约三个级数的大约三个级数$ blim Priep $ $ $ $ $ $ $ $ $ $ $ $ $之间的$ undials $ $ $^$ a。准确确定此辐射捕获率需要对大爆炸能窗口的融合概率进行定量和预测性描述($ 30 $ kev $ \ kev $ \ lyseSim e \ sillsim 400 $ kev),其中测量受到低计数率的阻碍。我们使用经过验证的核素核子和三核核的相互作用介绍了$^4 $ he $(d,γ)^6 $ li天体物理S因子的$^4 $ He(D,γ)^6 $^4 $ he(d,γ)的预测(或从头开始)的预测。通过使用Continuum使用Ab Inition无核壳模型来描述$^4 {\ rm He} $ - $ D $散射动力学和绑定的$^6 \ rm li $ product在平等的基础上,我们准确,始终如一地确定主要电磁转换的贡献,推动了辐射捕获过程。我们的结果表明,由于先前被忽略的磁性偶极子(M1)过渡,捕获概率的提高低于100,并且平均降低了7002 $ $ GK的热核捕获率的不确定性7。
The rate at which helium ($^4$He) and deuterium ($d$) fuse together to produce lithium-6 ($^6$Li) and a $γ$ ray, $^4$He$(d,γ)^6$Li, is a critical puzzle piece in resolving the roughly three orders of magnitude discrepancy between big bang predictions and astronomical observations for the primordial abundance of $^6$Li. The accurate determination of this radiative capture rate requires the quantitative and predictive description of the fusion probability across the big bang energy window ($30$ keV $\lesssim E\lesssim 400$ keV), where measurements are hindered by low counting rates. We present first-principles (or, ab initio) predictions of the $^4$He$(d,γ)^6$Li astrophysical S-factor using validated nucleon-nucleon and three-nucleon interactions derived within the framework of chiral effective field theory. By employing the ab initio no-core shell model with continuum to describe $^4{\rm He}$-$d$ scattering dynamics and bound $^6\rm Li$ product on an equal footing, we accurately and consistently determine the contributions of the main electromagnetic transitions driving the radiative capture process. Our results reveal an enhancement of the capture probability below 100 keV owing to previously neglected magnetic dipole (M1) transitions and reduce by an average factor of 7 the uncertainty of the thermonuclear capture rate between $0.002$ and $2$ GK.