论文标题

1D量规理论和骨骼系统的纠缠区法律

Entanglement area law for 1D gauge theories and bosonic systems

论文作者

Abrahamsen, Nilin, Tong, Yu, Bao, Ning, Su, Yuan, Wiebe, Nathan

论文摘要

我们证明了涉及无限维当地希尔伯特空间的一类量子系统的纠缠区法律。这类量子系统包括一个空间尺寸的纤维音模型,例如Hubbard-Holstein模型,以及U(1)和SU(1)和SU(2)晶格量表。我们的证明依赖于有关基态稳健性和光谱差距的新结果,这些结果依赖于希尔伯特空间的截断,该结果应用于先前工作的近似地面状态投影仪(AGSP)框架内。在建立该领域法时,我们开发了一个系统大小的独立限制,该独立限制了当地可观察的对哈密顿人而没有翻译对称性的期望​​值,这可能是单独的利益。我们的结果为使用张量网络方法研究具有无限局部自由度的量子系统的基态特性提供了理论上的理由。

We prove an entanglement area law for a class of 1D quantum systems involving infinite-dimensional local Hilbert spaces. This class of quantum systems include bosonic models such as the Hubbard-Holstein model, and both U(1) and SU(2) lattice gauge theories in one spatial dimension. Our proof relies on new results concerning the robustness of the ground state and spectral gap to the truncation of Hilbert space, applied within the approximate ground state projector (AGSP) framework from previous work. In establishing this area law, we develop a system-size independent bound on the expectation value of local observables for Hamiltonians without translation symmetry, which may be of separate interest. Our result provides theoretical justification for using tensor network methods to study the ground state properties of quantum systems with infinite local degrees of freedom.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源