论文标题

具有自适应k的自适应私有K选择,并应用于多标签PATE

Adaptive Private-K-Selection with Adaptive K and Application to Multi-label PATE

论文作者

Zhu, Yuqing, Wang, Yu-Xiang

论文摘要

我们为基于私人私有的$ K $选择提供了端到端的基于Renyi DP的框架。与以前需要在$ k $上进行数据独立选择的方法不同,我们建议私下发布$ k $的数据依赖性选择,以使$ k $ th和$ k $ - th和$ k+1)$ st“质量”之间的差距很大。这是通过新闻报道 - 毫无疑问的最大应用实现的。这不仅可以消除一个超参数,而且自适应选择$ k $,还证明了无序集合中顶部$ k $ indices的稳定性,因此我们可以使用提出的测试释放(PTR)的变体释放它们,而不会添加噪音。我们表明,与以前的前$ K $选择算法相比,我们的建设改善了隐私 - 实用性权衡。此外,我们将算法应用于具有大量标签的多标签分类任务中的“教师合奏(PATE)的私人聚合”,并表明它会带来显着的性能提高。

We provide an end-to-end Renyi DP based-framework for differentially private top-$k$ selection. Unlike previous approaches, which require a data-independent choice on $k$, we propose to privately release a data-dependent choice of $k$ such that the gap between $k$-th and the $(k+1)$st "quality" is large. This is achieved by a novel application of the Report-Noisy-Max. Not only does this eliminate one hyperparameter, the adaptive choice of $k$ also certifies the stability of the top-$k$ indices in the unordered set so we can release them using a variant of propose-test-release (PTR) without adding noise. We show that our construction improves the privacy-utility trade-offs compared to the previous top-$k$ selection algorithms theoretically and empirically. Additionally, we apply our algorithm to "Private Aggregation of Teacher Ensembles (PATE)" in multi-label classification tasks with a large number of labels and show that it leads to significant performance gains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源