论文标题
使用对比的课程学习 - 扩展版本
Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning -- Extended Version
论文作者
论文摘要
根据运输的数字化,我们目睹了越来越多的基于路径的智能城市应用程序,例如旅行时间估计和旅行路径排名。包括时间信息(例如出发时间)进入路径的时间路径(TP)至关重要。在这种情况下,必须学习同时考虑空间和时间相关性的通用时间路径表示(TPR),并且可以在不同的应用程序(即下游任务)中使用。现有方法无法实现目标,因为(i)监督方法在训练时需要大量特定于任务的标签,因此未能将获得的TPR推广到其他任务; (ii)通过无监督的方法可以学习通用表示,它们无视时间表,从而导致次优结果。为了应对现有解决方案的局限性,我们提出了一个弱监督的对比(WSC)学习模型。我们首先提出了一个时间路径编码器,该编码器将时间路径的空间和时间信息编码到TPR中。为了训练编码器,我们引入了较易于获得的弱标签,并且与不同的任务相关,例如,临时标签,指示峰值与出发时间的峰值与非高峰时间。基于弱标签,我们通过考虑空间和时间信息来构建有意义的正和阴性时间路径样本,这些空间信息和时间信息可以通过对比度学习来训练编码器,通过将较接近阳性样品的表示同时推开负面样本的表示,从而培训编码器。为了更好地指导对比度学习,我们提出了一种基于课程学习的学习策略,以便学习从易于训练的实例中进行。实验研究验证了所提出的方法的有效性。
In step with the digitalization of transportation, we are witnessing a growing range of path-based smart-city applications, e.g., travel-time estimation and travel path ranking. A temporal path(TP) that includes temporal information, e.g., departure time, into the path is fundamental to enable such applications. In this setting, it is essential to learn generic temporal path representations(TPRs) that consider spatial and temporal correlations simultaneously and that can be used in different applications, i.e., downstream tasks. Existing methods fail to achieve the goal since (i) supervised methods require large amounts of task-specific labels when training and thus fail to generalize the obtained TPRs to other tasks; (ii) through unsupervised methods can learn generic representations, they disregard the temporal aspect, leading to sub-optimal results. To contend with the limitations of existing solutions, we propose a Weakly-Supervised Contrastive (WSC) learning model. We first propose a temporal path encoder that encodes both the spatial and temporal information of a temporal path into a TPR. To train the encoder, we introduce weak labels that are easy and inexpensive to obtain and are relevant to different tasks, e.g., temporal labels indicating peak vs. off-peak hours from departure times. Based on the weak labels, we construct meaningful positive and negative temporal path samples by considering both spatial and temporal information, which facilities training the encoder using contrastive learning by pulling closer to the positive samples' representations while pushing away the negative samples' representations. To better guide contrastive learning, we propose a learning strategy based on Curriculum Learning such that the learning performs from easy to hard training instances. Experiments studies verify the effectiveness of the proposed method.