论文标题

来自机器学习增强量子层造影的直接参数估计

Direct parameter estimations from machine-learning enhanced quantum state tomography

论文作者

Hsieh, Hsien-Yi, Ning, Jingyu, Chen, Yi-Ru, Wu, Hsun-Chung, Chen, Hua Li, Wu, Chien-Ming, Lee, Ray-Kuang

论文摘要

为了找到最适合任意复杂数据模式的能力,机器学习(ML)增强的量子状态层析成像(QST)证明了其在提取有关量子状态的完整信息方面具有优势。我们通过直接生成目标参数来开发高性能,轻巧且易于安装的监督特征模型,而不是在训练截短的密度矩阵中使用重建模型。这样的基于特征模型的ML-QST可以避免处理大型希尔伯特空间的问题,但要保持高精度提取特征。通过实验测量的数据从平衡的同源探测器产生的数据,我们比较了有关通过重建和特征模型预测的量子噪声挤压状态的退化信息,都可以使从协方差法获得的经验拟合曲线一致。这种具有直接参数估计的ML-QST说明了针对具有挤压状态的应用的关键诊断工具箱,包括高级重力波检测器,量子计量学,宏观量子状态生成和量子信息过程。

With the capability to find the best fit to arbitrarily complicated data patterns, machine-learning (ML) enhanced quantum state tomography (QST) has demonstrated its advantages in extracting complete information about the quantum states. Instead of using the reconstruction model in training a truncated density matrix, we develop a high-performance, lightweight, and easy-to-install supervised characteristic model by generating the target parameters directly. Such a characteristic model-based ML-QST can avoid the problem of dealing with large Hilbert space, but keep feature extractions with high precision. With the experimentally measured data generated from the balanced homodyne detectors, we compare the degradation information about quantum noise squeezed states predicted by the reconstruction and characteristic models, both give agreement to the empirically fitting curves obtained from the covariance method. Such a ML-QST with direct parameter estimations illustrates a crucial diagnostic toolbox for applications with squeezed states, including advanced gravitational wave detectors, quantum metrology, macroscopic quantum state generation, and quantum information process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源