论文标题
智能阻塞预测和主动移交,用于视觉辅助的5G/6G UDN中的无缝连通性
Intelligent Blockage Prediction and Proactive Handover for Seamless Connectivity in Vision-Aided 5G/6G UDNs
论文作者
论文摘要
无线设备和实时服务的高潮要求迫使转移到更高的频率频谱。毫米波(MMWave)和Terahertz(THZ)频段与波束成形技术相结合为超密集网络(UDNS)提供了显着的性能增强。不幸的是,在较高的频谱中缩小细胞覆盖率和严重的渗透损失,使迁移率在UDN中成为关键问题,尤其是优化光束阻塞和频繁移交(HO)。在城市中心和城市地区,流动管理挑战已经普遍存在。为了解决这个问题,我们提出了一种新的机制,该机制是通过利用无线信号和跨道路监视系统驱动的,以智能预测可能的堵塞并及时进行HO。本文采用计算机视觉(CV)来确定障碍物和用户的位置和速度。此外,这项研究介绍了一个新的HO事件,称为Block事件{BLK},该事件由阻止对象的存在和向阻塞区域移动的用户定义。此外,多元回归技术可以预测剩余时间,直到用户到达阻塞区域,从而确定最佳HO决策。与没有阻塞预测的典型无线网络相比,模拟结果表明,我们的BLK检测和PHO算法在维持用户连接性和所需的经验质量(QOE)方面可取得40 \%的改善(QOE)。
The upsurge in wireless devices and real-time service demands force the move to a higher frequency spectrum. Millimetre-wave (mmWave) and terahertz (THz) bands combined with the beamforming technology offer significant performance enhancements for ultra-dense networks (UDNs). Unfortunately, shrinking cell coverage and severe penetration loss experienced at higher spectrum render mobility management a critical issue in UDNs, especially optimizing beam blockages and frequent handover (HO). Mobility management challenges have become prevalent in city centres and urban areas. To address this, we propose a novel mechanism driven by exploiting wireless signals and on-road surveillance systems to intelligently predict possible blockages in advance and perform timely HO. This paper employs computer vision (CV) to determine obstacles and users' location and speed. In addition, this study introduces a new HO event, called block event {BLK}, defined by the presence of a blocking object and a user moving towards the blocked area. Moreover, the multivariate regression technique predicts the remaining time until the user reaches the blocked area, hence determining best HO decision. Compared to typical wireless networks without blockage prediction, simulation results show that our BLK detection and PHO algorithm achieves 40\% improvement in maintaining user connectivity and the required quality of experience (QoE).