论文标题

最佳的大地曲面限制了杜宾在球体上的路径

Optimal Geodesic Curvature Constrained Dubins' Paths on a Sphere

论文作者

Darbha, Swaroop, Pavan, Athindra, Rajagopal, K. R., Rathinam, Sivakumar, Casbeer, David W., Manyam, Satyanarayana G.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, $U_{max}$ of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when traveling on a tight smaller circular arc of radius $r <1$, where $r$ depends on the bound, $U_{max}$. We show in this article that if $0<r \le \frac{1}{2}$, the shortest path between any two configurations of the rigid body on the sphere consists of a concatenation of at most three circular arcs. Specifically, if $C$ is the smaller circular arc and $G$ is the great circular arc, then the optimal path can only be $CCC, CGC, CC, CG, GC, C$ or $G$. If $r> \frac{1}{2}$, while paths of the above type may cease to exist depending on the boundary conditions and the value of $r$, optimal paths may be concatenations of more than three circular arcs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源