论文标题
差异私人全对最短路径距离:改进的算法和下限
Differentially Private All-Pairs Shortest Path Distances: Improved Algorithms and Lower Bounds
论文作者
论文摘要
我们研究了带有差异隐私(DP)的加权无向图中释放全皮最短路径的权重的问题。在这种情况下,基础图是固定的,如果其边缘权重有所不同,则两个图是邻居的,在$ \ ell_1 $ distance中最多有1美元。我们给出$ε$ -DP算法,并带有附加错误$ \ tilde {o}(n^{2/3} /ε)$和$(ε,δ)$ - dp算法,带有附加错误$ \ tilde {o \ tilde {o}(o \ tilde {o}(\ sqrt {\ sqrt {n} /这积极回答了Sealfon(PODS'16)的问题,他询问$ o(n)$ - 错误算法是否存在。我们还表明,对于任何足够小的$ε,δ> 0 $,必不可少的$ω(n^{1/6})$的添加误差是必需的。 最后,我们考虑允许乘法近似的放松设置。我们表明,使用乘法近似因子$ k $,%$ 2K-1 $,可以将添加期错误降低到$ \ tilde {o} \ left(n^{1/2 + o(1/k)}/am imp)$ y $ -dp case and $ \ tilde and $ \ tilde {1/y $}(1/3^y^y^^y^ + of) $(ε,δ)$ -DP情况。
We study the problem of releasing the weights of all-pair shortest paths in a weighted undirected graph with differential privacy (DP). In this setting, the underlying graph is fixed and two graphs are neighbors if their edge weights differ by at most $1$ in the $\ell_1$-distance. We give an $ε$-DP algorithm with additive error $\tilde{O}(n^{2/3} / ε)$ and an $(ε, δ)$-DP algorithm with additive error $\tilde{O}(\sqrt{n} / ε)$ where $n$ denotes the number of vertices. This positively answers a question of Sealfon (PODS'16), who asked whether a $o(n)$-error algorithm exists. We also show that an additive error of $Ω(n^{1/6})$ is necessary for any sufficiently small $ε, δ> 0$. Finally, we consider a relaxed setting where a multiplicative approximation is allowed. We show that, with a multiplicative approximation factor $k$, %$2k - 1$, the additive error can be reduced to $\tilde{O}\left(n^{1/2 + O(1/k)} / ε\right)$ in the $ε$-DP case and $\tilde{O}(n^{1/3 + O(1/k)} / ε)$ in the $(ε, δ)$-DP case, respectively.