论文标题
改进的轻巧的Yolov5模型,基于注意力掩模检测的注意机制
An Improved Lightweight YOLOv5 Model Based on Attention Mechanism for Face Mask Detection
论文作者
论文摘要
2019年冠状病毒为全球社会稳定和公共卫生带来了严重的挑战。遏制流行病的一种有效方法是要求人们在公共场所戴口罩,并通过使用合适的自动探测器来监视戴口罩状态。但是,现有的基于深度学习的模型努力同时达到高精度和实时性能的要求。为了解决这个问题,我们提出了基于Yolov5的改进的轻质面膜检测器,该检测器可以实现精确和速度的良好平衡。首先,提出了一种将ShuffLenetV2网络与协调注意机制相结合的新型骨干shufflecanet作为骨干。之后,将有效的路径攻击网络BIFPN作为特征融合颈应用。此外,在模型训练阶段,定位损失被α-CIOU取代,以获得更高质量的锚。还利用了一些有价值的策略,例如数据增强,自适应图像缩放和锚点集群操作。 Aizoo面膜数据集的实验结果显示了所提出模型的优越性。与原始的Yolov5相比,提出的模型将推理速度提高28.3%,同时仍将精度提高0.58%。与其他七个现有型号相比,它的最佳平均平均精度为95.2%,比基线高4.4%。
Coronavirus 2019 has brought severe challenges to social stability and public health worldwide. One effective way of curbing the epidemic is to require people to wear masks in public places and monitor mask-wearing states by utilizing suitable automatic detectors. However, existing deep learning based models struggle to simultaneously achieve the requirements of both high precision and real-time performance. To solve this problem, we propose an improved lightweight face mask detector based on YOLOv5, which can achieve an excellent balance of precision and speed. Firstly, a novel backbone ShuffleCANet that combines ShuffleNetV2 network with Coordinate Attention mechanism is proposed as the backbone. Afterwards, an efficient path aggression network BiFPN is applied as the feature fusion neck. Furthermore, the localization loss is replaced with alpha-CIoU in model training phase to obtain higher-quality anchors. Some valuable strategies such as data augmentation, adaptive image scaling, and anchor cluster operation are also utilized. Experimental results on AIZOO face mask dataset show the superiority of the proposed model. Compared with the original YOLOv5, the proposed model increases the inference speed by 28.3% while still improving the precision by 0.58%. It achieves the best mean average precision of 95.2% compared with other seven existing models, which is 4.4% higher than the baseline.