论文标题
非绘制歧管的大地测量流的特殊集
Exceptional sets for geodesic flows of noncompact manifolds
论文作者
论文摘要
对于负弯曲的Riemannian歧管$ M $和某些子集$ a \ subset t^1m $的测地测流,我们研究了limit $ a $ a $ a $ a $ a $ a $ a $ a-limit limit do butsect otsect $ a $ a $ a $。我们表明,如果$ a $的拓扑$ \ ast $ - entropy小于测量流的拓扑熵,则极限$ $ a $ a-excefiention套装具有完整的拓扑熵。有一些后果是针对限制的特殊集合的紧凑型子集和适当的子手机的后果。
For a geodesic flow on a negatively curved Riemannian manifold $M$ and some subset $A\subset T^1M$, we study the limit $A$-exceptional set, that is the set of points whose $ω$-limit do not intersect $A$. We show that if the topological $\ast$-entropy of $A$ is smaller than the topological entropy of the geodesic flow, then the limit $A$-exceptional set has full topological entropy. Some consequences are stated for limit exceptional sets of invariant compact subsets and proper submanifolds.