论文标题
大火的大球II:在银河系中,宇宙时代的星形簇的进化和破坏
Great Balls of FIRE II: The evolution and destruction of star clusters across cosmic time in a Milky Way-mass galaxy
论文作者
论文摘要
当前的星系模拟可以解决单个巨型分子云,即致密星团的祖细胞。但是,这些年轻的大型群集的进化命运,以及它们是否可以成为许多星系中观察到的旧球状簇(GC),这取决于内部动力学过程和外部银河系效应的复杂相互作用。我们介绍了第一个巨大的巨大型号($ n \ sim10^5-10^7 $)的体型型号,该星团在银河系的Fire-2 MHD模拟中形成,具有相关的初始条件和从宇宙学模拟中提取的潮汐力。我们从Grudić等人的$> 6 \ times10^4M _ {\ odot} $中选择895($ \ sim 30 \%$),从Grudić等人〜2022中选择$ z = 0 $,并使用集群Monte Carlo代码将它们集成到$ z = 0 $。该过程预测具有148个GC的MW样系统,主要是在恒星形成的早期爆发模式下形成的。与银河系或M31相比,我们的GC年轻,较少,核心收获。这是由于宿主银河系的组装历史和年龄关系的关系而产生的:年轻的群集优先出生在更强大的潮汐领域,最初保留的恒星质量黑色的黑洞更少,导致它们更快地失去质量,并且比较早的GC更快地达到核心崩溃。我们的结果表明,GC的质量和核心/半光半径不仅是由内部动力学过程所影响的,而且还取决于其宿主星系的特定进化史。这些结果强调,具有现实恒星物理学的$ n $体型研究对于理解GC系统的发展和当前特性至关重要。
The current generation of galaxy simulations can resolve individual giant molecular clouds, the progenitors of dense star clusters. But the evolutionary fate of these young massive clusters, and whether they can become the old globular clusters (GCs) observed in many galaxies, is determined by a complex interplay of internal dynamical processes and external galactic effects. We present the first star-by-star $N$-body models of massive ($N\sim10^5-10^7$) star clusters formed in a FIRE-2 MHD simulation of a Milky Way-mass galaxy, with the relevant initial conditions and tidal forces extracted from the cosmological simulation. We select 895 ($\sim 30\%$) of the YMCs with $ > 6\times10^4M_{\odot}$ from Grudić et al.~2022 and integrate them to $z=0$ using the Cluster Monte Carlo Code, \texttt{CMC}. This procedure predicts a MW-like system with 148 GCs, predominantly formed during the early, bursty mode of star formation. Our GCs are younger, less massive, and more core-collapsed than clusters in the Milky Way or M31. This results from the assembly history and age-metallicity relationship of the host galaxy: younger clusters are preferentially born in stronger tidal fields and initially retain fewer stellar-mass black holes, causing them to lose mass faster and reach core collapse sooner than older GCs. Our results suggest that the masses and core/half-light radii of GCs are shaped not only by internal dynamical processes, but also by the specific evolutionary history of their host galaxies. These results emphasize that $N$-body studies with realistic stellar physics are crucial to understanding the evolution and present-day properties of GC systems.