论文标题
搜索具有SPT-3G数据的类似轴突的时间依赖性宇宙双折射
Searching for axion-like time-dependent cosmic birefringence with data from SPT-3G
论文作者
论文摘要
超轻轴突状颗粒(ALP)是令人信服的候选,因为它们有可能解决$λ$ CDM预测和宇宙学观察值之间的小规模差异。轴突 - 光子耦合诱导线性极化光子穿过ALP场的偏振旋转;因此,随着局部ALP暗物质场随时间振荡,遥远的静态极化源似乎将以与ALP质量成正比的频率振荡。我们使用从SPT-3G(南极望远镜上的当前接收器)的宇宙微波背景的观察,以将轴 - 光子偶联常数$ g_ {ϕγ} $的值设置为$ 10^{-22}^{-22} -10^{-19} $ ev,100 sosciLlation to oscillation to oscillation to oscillation $ g_ {ϕγ} $。在1至100天之间的时期($ 4.7 \ times 10^{ - 22} \ text {ev} \ leq m_DAct \ leq 4.7 \ times 10^{ - 20} \ 20} \ text {ev} $),其中极限大约是常量的,我们设置了一个中位数95%c.l。天空偏振旋转幅度0.071度的上限。假设暗物质包括一个单一的ALP物种,其局部暗物质密度为$ 0.3 \ text {gev/cm}^3 $,这对应于$ g_ {ϕγ} <1.18 \ times 10^{ - 12} { - 12} { - text {gev} \ text {ev}} \ right)$。这些新的限制代表了使用相同效果〜3.8的相同效果设置的先前最强限制的改进。
Ultralight axionlike particles (ALPs) are compelling dark matter candidates because of their potential to resolve small-scale discrepancies between $Λ$CDM predictions and cosmological observations. Axion-photon coupling induces a polarization rotation in linearly polarized photons traveling through an ALP field; thus, as the local ALP dark matter field oscillates in time, distant static polarized sources will appear to oscillate with a frequency proportional to the ALP mass. We use observations of the cosmic microwave background from SPT-3G, the current receiver on the South Pole Telescope, to set upper limits on the value of the axion-photon coupling constant $g_{ϕγ}$ over the approximate mass range $10^{-22} - 10^{-19}$ eV, corresponding to oscillation periods from 12 hours to 100 days. For periods between 1 and 100 days ($4.7 \times 10^{-22} \text{ eV} \leq m_ϕ\leq 4.7 \times 10^{-20} \text{ eV}$), where the limit is approximately constant, we set a median 95% C.L. upper limit on the amplitude of on-sky polarization rotation of 0.071 deg. Assuming that dark matter comprises a single ALP species with a local dark matter density of $0.3\text{ GeV/cm}^3$, this corresponds to $g_{ϕγ} < 1.18 \times 10^{-12}\text{ GeV}^{-1} \times \left( \frac{m_ϕ}{1.0 \times 10^{-21} \text{ eV}} \right)$. These new limits represent an improvement over the previous strongest limits set using the same effect by a factor of ~3.8.